Noa Pinter-Wollman

Associate Professor

office: 310H Botany

Recent Courses

E&S SCI M216 | EE BIOL M200A - Evolutionary Biology
EE BIOL 135 | EE BIOL 235 - Population Genetics
EE BIOL 263 - Seminar: Population Genetics

Research Interests

Many biological systems are complex aggregates of multiple agents working together towards collective, higher-order goals, and evolution acts on variation in these emergent collective properties. There is no central control dictating the activities of members in the assembly. Instead, agents use local signals that determine their behavior and are received through an intricate interaction network resulting in collective phenotypes. Thus, the composition of a group and the way its members interact affects the success of the group as a whole, just as the composition of any sports team dictates its success in the league.

The Pinter-Wollman lab examines the emergence of collective outcomes from group composition by combining field and lab studies with computer simulations, theoretical work, image analysis, and social network analysis.

Selected Publications

Wright C.M., Lichtenstein J.L.L., Montgomery G.A., Luscuskie L.P., Pinter-Wollman N., & Pruitt J.N., "Exposure to predators reduces collective foraging aggressiveness and eliminates its relationship with colony personality composition", Behavioral Ecology Sociobiology, 71 (126): - (2017) [link].

Lichtenstein J.L.L, Wright C.M., McEwen B., Pinter-Wollman N. & Pruitt J.N., "The multidimensional behavioral hypervolumes of two interacting species predict their space use and survival", Animal Behaviour, 132 (2017): 129-136 (2017) .

Mosqueiro T., Cook C., Huerta R., Gadau J., Smith B. & Pinter-Wollman N., " Task allocation and site fidelity jointly influence foraging regulation in honeybee colonies", Royal Society Open Science, 4 : 170344- (2017) [link].

Keiser C.N., Pinter-Wollman N., Ziemba M.J., Kothamasu K.S., & Pruitt J.N., "The index case is not enough: Variation among individuals, groups, and social networks modify bacterial transmission dynamics", Journal of Animal Ecology, 4 : - (2017) [link].

Pinter-Wollman N., Mi B. & Pruitt J.N., "Replacing bold individuals has a smaller impact on group performance than replacing shy indiviuals", Behavioral Ecology, 4 : - (2017) [link].

Pinter-Wollman N., Fiore S.M. & Theraulaz G., "The impact of architecture on collective behaviour", Nature Ecology and Evolution, 1 : 0111- (2017) .

Pruitt J.N., Howell K.A., Gladney S.J., Yang Y., Lichtenstein J.L.L., Spicer M.E., Echeverri S.A., & Pinter-Wollman N., "The behavioral hypervolume of predator groups and predator-predator interactions shape prey survival rates and selection on prey behavior", American Naturalist, 189 (3): 254-266 (2017) .

Lichtenstein J.L., Wright C.M., Luscuskie L.P., Montgomery G.A., Pinter-Wollman N. & Pruitt J.N., "Participation in cooperative prey capture and the benefits gained from it are associated with individual personality", Current Zoology, 189 (3): - (2017) .

Pruitt J.N., Bolnick D.I., Sih A., DiRienzo N. & Pinter-Wolman N., "Behavioral hypervolumes of spider communities predict community performance and disbandment", Proceedings of the Royal Society B, 283 : 20161409- (2016) .

Keiser C.N., Howell K.A., Pinter-Wollman N., & Pruitt J.N., "Personality composition alters the transmission of cuticular bacteria in social groups", Biology Letters, 12 : 20160297- (2016) .