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Abstract

Efforts to reduce the viral load of human immunodeficiency virus type 1 (HIV-1) during long-term treatment are challenged
by the evolution of anti-viral resistance mutants. Recent studies have shown that gene therapy approaches based on
conditionally replicating vectors (CRVs) could have many advantages over anti-viral drugs and other approaches to therapy,
potentially including the ability to circumvent the problem of evolved resistance. However, research to date has not
explored the evolutionary consequences of long-term treatment of HIV-1 infections with conditionally replicating vectors. In
this study, we analyze a computational model of the within-host co-evolutionary dynamics of HIV-1 and conditionally
replicating vectors, using the recently proposed ‘therapeutic interfering particle’ as an example. The model keeps track of
the stochastic process of viral mutation, and the deterministic population dynamics of T cells as well as different strains of
CRV and HIV-1 particles. We show that early in the co-infection, mutant HIV-1 genotypes that escape suppression by CRV
therapy appear; this is similar to the dynamics observed in drug treatments and other gene therapies. In contrast to other
treatments, however, the CRV population is able to evolve and catch up with the dominant HIV-1 escape mutant and persist
long-term in most cases. On evolutionary grounds, gene therapies based on CRVs appear to be a promising tool for long-
term treatment of HIV-1. Our model allows us to propose design principles to optimize the efficacy of this class of gene
therapies. In addition, because of the analogy between CRVs and naturally-occurring defective interfering particles, our
results also shed light on the co-evolutionary dynamics of wild-type viruses and their defective interfering particles during
natural infections.
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Introduction

The HIV-1 pandemic has been a major challenge in global

public health for decades, and continues to impose crippling

burdens of morbidity and mortality worldwide. While recent years

have brought major breakthroughs in identifying the protective

effect of male circumcision [1,2,3] and the transmission-blocking

potential of early antiretroviral (ARV) drug therapy [4], the

scalability and sustainability of these strategies remains in doubt.

ARV therapy can reduce viral loads to undetectable levels, but

affected populations must be reached, continuous treatment (and

hence investment) is required, long-term ARV use can result in

side effects, and there is an ever-present risk that the virus will

evolve drug resistance [5,6,7]. Meanwhile efforts to develop a

protective vaccine, the conventional tool for broad-scale disease

prevention, have been unsuccessful so far [8]. As a result,

alternative strategies are being investigated, including gene

therapy approaches. Gene therapies offer many advantages

compared with pharmaceutical drugs, such as low economic cost,

ease of administration, and potential to reduce HIV-1 viral loads

by sustained interference with the viral life cycle (reviewed in

[9,10]).

All methods of HIV-1 treatment, and many methods of

prevention, are challenged by the extremely rapid evolution of

the HIV-1 genome. The error-prone reverse transcription of HIV-

1 generates a ‘viral swarm’ of HIV-1 genotypes within an

individual host. This population of HIV-1 virions is under

continual selection, from immune system effectors and medical

treatments, resulting in the rapid generation of immune escape

variants and drug-resistant mutants. Such resistant mutants are

frequently observed in patients under long-term drug treatment

and gene therapy [11,12,13,14,15].

One family of gene therapy approaches offers the intriguing

possibility of overcoming the challenges caused by rapid HIV-1

evolution. Conditionally replicating vectors (CRVs) have been

discussed as a gene therapy strategy to combat HIV-1 for two

decades [16,17,18]. Like other approaches to antiviral gene

therapy, CRVs are capable of delivering genetic elements into the

host cell’s nuclear genome to block HIV-1 replication through

inhibition and competition [16,19,20,21,22]. Many proposals for
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CRVs center on genetic modification of HIV-1 or other

lentiviruses, including the addition of viral inhibitory machineries

and the deletion of essential genes for viral replication or

packaging. The defining characteristic of CRVs is that they can

create new virions, and hence transmit from cell to cell, by

complementation with wild-type HIV-1; because of this trait,

CRVs are also known as mobilization-competent vectors [19,23].

Because of the clear analogy to naturally-occurring defective

interfering particles [24,25,26,27,28,29], the term therapeutic

interfering particle (TIP) has also been proposed [30].

In contrast to other therapeutic approaches, the CRV approach

offers a unique opportunity to overcome the problem of HIV-1

evolution [19,30]. Because CRVs replicate using the exact same

machinery as HIV-1, they have potential to evolve as rapidly as

HIV-1. Consequently, it is possible that CRVs can hold their

ground in a co-evolutionary arms race, and continuously interfere

with HIV-1 replication by generating mutants that match HIV-1

escape mutants. This phenomenon has been reported previously

for defective interfering particles [31,32,33,34]. Recently, an

experimental study has shown that a CRV expressing small non-

coding RNAs that targeted the long terminal repeat (LTR) of

HIV-1 was able to suppress HIV-1 viral production without viral

escape for one month [19]. A clinical trial has shown that a CRV

can be maintained stably within patients, and the long-term

presence of the vector does not induce adverse clinical effects [21].

These results highlight the unique promise of CRVs as a strategy

for HIV-1 intervention. However, the co-evolutionary dynamics of

HIV-1 and CRVs have not been investigated in detail, and the

conditions that would allow CRVs to persistently suppress HIV-1

abundance are not known. Important questions have been raised

about the conditions that would allow escape mutants of HIV-1 to

arise, and the outcomes of co-evolution between the HIV-1 and

CRV genomes [9,11,16,19,21,22,30,35]. In addition, it is possible

that CRVs could select for faster replicating HIV-1 strains,

thereby potentially causing more severe disease in those suscep-

tible individuals who are not protected [36].

Here we provide the first investigation of the co-evolutionary

dynamics associated with the use of a CRV gene therapy against

HIV-1. We use a mathematical modeling approach, building upon

the best-developed model framework for the within-host dynamics

of a CRV therapy against HIV-1 [30,37]. Thus our analysis

focuses on a particular proposed therapy, the therapeutic

interfering particle or TIP, but this case study enables us to

address general questions about the evolutionary robustness of

CRV therapies against HIV-1. Mathematical modeling is well

established as a tool for elucidating the mechanisms underlying

viral dynamics and evolution [38,39,40], and has contributed

greatly to our understanding of the dynamics of HIV-1 and the

immune system [41,42,43], as well as the mechanisms by which

antiviral drugs act on the HIV-1 population within hosts

[43,44,45]. Models have been also used for assessing the potential

properties and refining design principles of those proposed

interventions, such as novel gene therapies, for which in vivo data

are currently lacking. Recently, several modeling studies have

investigated the properties of TIPs. Weinberger et al. modeled the

in vivo dynamics of HIV-1 and TIPs, and showed that TIPs could

reduce the HIV-1 viral load by orders of magnitude to a level

comparable to that caused by highly active ARV treatment [37].

In another study, Metzger et al. extended the previous model to

study the dynamics of HIV-1 and TIP at three levels (intracellular,

within-host and population) to understand the population-level

consequences of TIP intervention [30]. That study made

qualitative arguments about the likely direction of selection acting

on TIP and HIV-1 at different scales, and predicted that

competing selection pressures across scales would lead TIP

therapies to be evolutionarily robust. However the co-evolutionary

dynamics are not considered explicitly in either study, so these

hypotheses remain untested.

We study the co-evolutionary dynamics of TIPs and HIV-1 in

the peripheral blood within a host with the aim of establishing

design principles for the class of CRV gene therapies and

addressing safety concerns associated with them. Our aims are

to evaluate the long-term persistence and efficacy of TIPs, to

clarify the likely selective pressures on HIV-1 arising from the

presence of TIPs, and to test whether HIV-1 can evolve resistant

mutants that escape TIP inhibition. By constructing and analyzing

mathematical models, we show that the dynamics of HIV-1 and

TIP follow a characteristic three-phase pattern. The first two

phases reflect temporary efficacy of the therapy followed by

evolutionary escape of HIV-1, as observed in studies of antiviral

drugs as well as other gene therapy approaches. The TIP is

strikingly different, though, because under most conditions, it is

able to catch up to HIV-1 evolution and continue to exert its

therapeutic effects even after the HIV-1 escape mutant has arisen.

We hypothesize that this third phase of sustained suppression of

HIV-1 may be a general feature of well-designed CRV therapies,

as indicated by preliminary empirical findings [19]. By performing

sensitivity analysis, we find that the qualitative behavior of the

system is robust to differing assumptions about the detailed

interactions between HIV-1 and TIP, supporting this notion. We

conclude by using our model to propose possible design criteria to

enhance the efficacy and robustness of this class of CRVs in the

context of HIV-1 evolution.

Case study and model overview
The TIP is a proposal for a genetically engineered CRV to

combat HIV-1 [30,37]. It would have a genomic structure that is

closely similar to HIV-1, but lacking all the structural and

envelope genes required for replication and packaging. Upon

infection, the TIP integrates its genome into the host cell, but it

can only replicate when the cell is further infected by HIV-1 such

that the gene products required for viral replication and packaging

Author Summary

A long-standing challenge in efforts to control human
immunodeficiency virus type 1 (HIV-1) is the rapid
evolution of the virus. Any effective therapy quickly gives
rise to so-called escape mutants of the virus, potentially
resulting in treatment failure. A distinct class of gene
therapy based on conditionally replicating vectors has
been suggested to have potential to circumvent the
problem of viral evolutionary escape. A conditionally
replicating vector cannot replicate on its own, but when
it coinfects the same cell with HIV-1, it is packaged into a
virion-like particle and can be transmitted from cell to cell.
Importantly, these vectors replicate using the same
machinery that HIV-1 uses, and so they mutate at the
same rate. This opens the possibility that conditionally
replicating vectors could ‘keep up’ with HIV-1 evolution
and prevent HIV-1 escape. In this study, we present
mathematical analyses of the co-evolutionary dynamics of
HIV-1 and conditionally replicating vectors within a
patient. Our results show that with proper genetic design,
conditionally replicating vectors can keep pace with HIV-1
evolution, leading to persistent reduction in HIV-1 viral
loads. Therefore, this class of gene therapies shows
potential for ‘evolution-proof’ control of HIV-1, and merits
further investigation in laboratory trials.

Co-evolutionary Dynamics of HIV-1 and CRVs
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are available. The TIP would be designed so that its genome is

synthesized at a much higher rate than that of HIV-1, resulting in

higher production of TIP virions from a dually infected cell. In

addition, the TIP can be genetically modified to encode inhibitory

agents, such as RNAi [46,47] and ribozyme nuclease [48], to

inhibit HIV-1 production by blocking its life cycle. As explored in

earlier modeling studies [30,37], the efficacy of TIPs is driven by

dynamics at several scales. At the cellular scale, resource

competition between TIPs and HIV-1 and the direct inhibition

of HIV-1 production result in reduced production of new HIV-1

virions [30]. At the scale of within-host dynamics, infection with

TIP results in a lower overall HIV-1 viral load (see Refs. 30,37 for

detailed analyses of the dynamics between HIV-1 and the TIP

without considering evolution). Because TIPs are packaged in

HIV-1 structural elements, it has hypothesized that they could

transmit between hosts using the same routes as HIV-1, but we do

not consider this phenomenon here.

We developed a cross-scale model of the co-evolutionary

dynamics of HIV-1 and TIP, based on the biological framework

proposed previously by Metzger et al. [30] (Fig. 1). The model

keeps track of the competition of multiple strains of HIV-1 and

TIP at both the cellular level and the host level. At the host level,

infection of susceptible CD4+ T cells (U) by the ith HIV-1 viral

strain (denoted as xi, i = 1…m) or by the jth TIP strain (denoted as

yj, j = 1…n) leads to HIV-1 infected cells (Hi) or TIP infected cells

(Tj), respectively. T cells infected by yj (Tj) can be further infected

by xi, becoming dually infected cells (Mij). New HIV-1 viral

particles are produced from both HIV-1 infected cells and dually

infected cells, whereas new TIP particles are produced only from

dually infected cells, since the materials needed for replication and

packaging are lacking in TIP infected cells (Tj).

At the cellular level, both the HIV-1 genome and the TIP

genome are transcribed to genomic RNAs (gRNAs) in dually

infected cells. We follow the assumption of Metzger et al. [30] that

dimerization and encapsidation of two copies of genomic RNAs

result in three types of proviruses: HIV-1 homozygotes, TIP

homozygotes, and heterozygotes with one copy of HIV-1 gRNA

and one copy of TIP gRNA. Heterozygotes are not viable to infect

other cells owing to the difference in length between the gRNAs of

HIV-1 and TIP [30]. Therefore, TIP production is proposed to

reduce HIV-1 yield in a cell through pairing with HIV-1 genomes,

i.e. a form of resource competition. To further reduce HIV-1

production, the TIP can be engineered to encode an inhibitory

factor, such as an RNAi, which blocks the process of HIV-1

genome production and virion formation. Broadly speaking, for

the class of gene therapies based on CRVs, the number of HIV-1

virions produced by the dually infected cell can be reduced by two

factors: competition with CRV genomes for resources, and direct

inhibition by inhibitory factors encoded by CRV genomes. The

intracellular model constructed for the TIP is a special case for the

general interactions of competition and inhibition between CRVs

and HIV-1 genomes.

To model the molecular evolution of HIV-1 and TIP, we

assume that the cellular-scale phenotypes of HIV-1 and TIP are

determined by the genomes of HIV-1 and TIP and the

interactions between them. The genotype-phenotype mapping is

determined using a parsimonious approach recently introduced for

co-evolutionary models of viruses and the immune system [41,49].

Each HIV-1 or TIP strain is represented by a digital sequence,

reflecting the genetic elements involved in controlling the traits of

interest, and trait values arising from interactions between HIV-1

and TIP are determined by a string-matching algorithm (see

Methods).

Building on the model of Metzger et al. [30], we consider three

critical phenotypic parameters (D, P, and A) in the cellular model.

Parameter D is the fraction of inhibition/upregulation of HIV-1 gRNA

production, and it models the degree of inhibition exerted by the

TIP-encoded repressor on the production of HIV-1 gRNA in a

dually infected cell. Mutations in the gene encoding the repressor

in the TIP genome, or in the region where the repressor binds in

the HIV-1 genome, can change the value of D [30,37]. We allow

the value of D to vary over a range from the situation where HIV-

1 production is completely blocked by the inhibitory factor (D = 1)

to the situation where the inhibitory factor has evolved to become

an activator of HIV-1 production (D,0). Note that since TIP

replication and packaging require materials produced by the HIV-

1 genome, inhibition of HIV-1 production affects TIP production

in a similar way (see Methods). Parameter P is the production ratio of

TIP gRNA over HIV-1 gRNA in a dually infected cell. This is the

relative rate of TIP genome replication in a dually infected cell,

compared to the rate of wild-type HIV-1 genome replication. The

value of parameter P will be influenced by the interaction between

TIP gRNA and the HIV-1 proteins Rev and Tat, as well as TIP’s

genome length and manipulations to its splice sites [30,37].

Accordingly we assume that the value of P is jointly controlled by

the two genomes. Parameter A is the replication coefficient, which

characterizes the genome replication rate of a HIV-1 strain in a

cell infected only with HIV-1, relative to the genome replication

rate of the wild-type HIV-1 strain. This factor is a simple

phenomenological representation of the evolutionary constraints

on the HIV-1 genome, since there may be a fitness cost to

mutating away from the wild-type genotype that prevails in the

absence of TIPs. Only mutations in the HIV-1 genome can

change the value of A.

We implemented these intracellular and within-host mecha-

nisms using a hybrid deterministic-stochastic framework, following

techniques developed elsewhere [41,50]. The dynamics of existing

strains of HIV-1 and TIP are modeled by ordinary differential

equations, while mutation events are modeled stochastically.

Results

Static fitness landscapes
To gain insight into the competition between different strains of

HIV-1 and TIP, we started with the two simplest evolutionary

scenarios: the ‘HIV-1 mutant’ model and the ‘TIP mutant’ model

Figure 1. A schematic of the multi-strain HIV-1 and TIP system
at the within-host level. At the within-host level, the uninfected
CD4+ T cell (‘U’) can be infected by one of m HIV-1 strains or one of n TIP
strains, becoming an HIV-1 infected cell (‘Hi’, i = 0,1,..m) or a TIP infected
cell (‘Tj’, j = 0,1,…n), respectively. A TIP infected cell can be further
infected by one of m HIV-1 strains, resulting in m*n different types of
dually infected T cells (‘Mij’).
doi:10.1371/journal.pcbi.1002744.g001

Co-evolutionary Dynamics of HIV-1 and CRVs
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(see Eqn.S7 and S8 in Text S1). Each of these models considers

only three strains: wild-type or ‘resident’ strains of HIV-1 and TIP,

and a mutant strain of either HIV-1 or TIP. We assumed that

infection with a mutant strain results in different D, P and A values

compared to the wild-type strain (see Methods section for details).

To reveal the fitness landscape of the mutant against a fixed

resident viral population in a host, we performed invasion analysis,

in which the effective reproduction number, Reff, of the mutant is

calculated when it is introduced into a system where both the

resident HIV-1 and the resident TIP are at equilibrium [51]. Reff

is a measure of the relative fitness of the mutant compared to the

resident strain. When Reff.1, the mutant can invade the system

and replace the resident strain, and when Reff,1, the mutant is

unable to invade and dies out. We used Reff,H and Reff,T to denote

the effective reproduction numbers of the mutant HIV-1 in the

‘HIV-1 mutant’ model and the mutant TIP in the ‘TIP mutant’

model, respectively. Analytic expressions for both quantities are

shown in equations (5) and (6) in the Methods section.

We first analyzed the selection pressure on HIV-1 replication,

i.e. how the fitness of mutant HIV-1 strains varies as a function of

the replication coefficient A. Several lines of evidence show that

increases in viral gRNA replication rate beyond the wild-type rate

have negative impacts on overall fitness, since the death rate of the

infected T cell increases dramatically as viral gRNAs and virus-

encoded proteins accumulate inside the cell [52,53]. In the model,

we follow previous studies [54,55] in assuming that the wild-type

replication rate (A = 1) has evolved to be optimal in the absence of

TIP, and modeling the dependence of the death rate of the HIV-1

infected T cell on the production rate of HIV-1 gRNA with a

concave-up function (V(A)) (see Methods). In a dually infected

host, we found that the optimal replication rate at which HIV-1

attains maximal fitness in the presence of TIP is very close to the

wild-type value (Fig. 2A). This is because the majority HIV-1

virions are produced from singly infected cells, and thus the overall

fitness of HIV-1 within hosts is more affected by changes of HIV-1

production in singly infected cells than in dually infected cells.

Therefore, HIV-1 strains with notably higher replication rates,

which potentially could be more virulent, are unlikely to be

selected and transmitted to other hosts.

The parameters D and P are determined by the genomes of

both HIV-1 and TIP, so we considered their impact on the fitness

of both types of virus. For the fraction of inhibition (D), we allowed

it to vary between 21 and 1 to consider both upregulation and

inhibition of HIV-1 production by TIP-encoded elements. The

optimal value of D for HIV-1 varies with the rate of HIV-1 gRNA

replication (Fig. 2A). However since we have shown that the HIV-

1 gRNA replication rate will stay near the wild-type level of A = 1

in the presence of TIP, the optimal value of D for HIV-1 is 0

(Fig. 2A). Considering the fitness of TIP mutants, we found that

the optimal value of D for TIP is also 0 when A = 1 (Fig. 2C). This

suggests that selection will lead the inhibitory factor encoded by

TIP to become non-functional over time.

The parameter P characterizes the relative rate of TIP gRNA

production in a dually infected cell. In the model, we allowed P to

vary from 0 to 30 in line with arguments presented by Metzger et

al. [30]. Higher P values cause dually infected cells to produce

more TIP virions, while at the same time wasting HIV-1 resources.

Consequently, selection on HIV-1 favors low P values (Fig. 2B),

while selection on TIP favors high P values (Fig. 2C), as argued

previously [30].

To ensure robustness of these results, we further tested two

major assumptions made in this analysis. We first tested the

sensitivity of the optimal A and D values for HIV-1 to the assumed

relationship between the HIV-1 replication rate and the death rate

of infected T cells (Fig. S1A). If the death rate of infected T cells is

a concave-up function of HIV-1 replication rate, then fitness

decreases as the replication rate increases beyond the wild-type

level. When the curvature of this relationship is at least moderate

as assumed in our main analyses (a = 1 in the function V), then the

optimal values of A and D remain close to 1 and 0 (the wild-type

values), respectively (Fig. S1B). As the curvature becomes weaker,

i.e. the stiffness parameter a becomes smaller, the optimal values of

A and D become larger. If the death rate of HIV-1 infected cells is

a linear function of HIV-1 replication (V(x) = 0.7*x; the black line

in Fig. S1A), the total number of virions produced in a cell would

stay the same irrespective of variations in the HIV-1 genomic

production rate, i.e. variations in HIV-1 replication rate do not

change its fitness. It can then be concluded from Eqns. (1) and (5)

Figure 2. The fitness landscapes for HIV-1 and TIP mutants in the 3-strain ‘mutant invasion’ models. The fitness was calculated as the
effective reproduction number of the mutant when it is introduced into a host with the wild-type HIV-1 and the wild-type TIP at equilibrium. (A) The
invasion fitness of HIV-1 mutants (Reff,H) with different values of the HIV-1 replication coefficient, A, and the fraction of inhibition, D. Positive values of
D correspond to inhibition of HIV-1 gRNA production, while negative values correspond to upregulation. (B) The invasion fitness of HIV-1 mutants
(Reff,H) with different values of the fraction of inhibition, D, and production ratio, P. (C) The invasion fitness of TIP mutants (Reff,T) with different values
of the fraction of inhibition, D, and production ratio, P. In all three plots, two parameter values were varied while keeping the third one fixed; baseline
values are P = 30, D = 0, A = 1. Lines of white stars in the plots show the maximal fitness for one parameter while other parameter values are fixed.
doi:10.1371/journal.pcbi.1002744.g002

Co-evolutionary Dynamics of HIV-1 and CRVs
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in the Methods section that changes in the values of A and D do

not affect the value of Reff,H, and therefore, the presence of CRVs

does not select for HIV-1 variants with higher replication rate in

this scenario. Second, we explored the possibility of mutation in

the Dimerization Initiation Signal (DIS) region of the HIV-1 and

TIP genome, which changes the rates of dimerization of different

single-stranded genomic RNAs, and thereby changes the distri-

bution of diploid genomes. Intuitively, a lower rate of heterodimer

formation would result in higher production of both HIV-1 and

TIP virions in dually infected cells, and thus would raise HIV-1

and TIP fitness. However, this benefit may be balanced by fitness

costs arising from mutating the DIS region. Numerous experi-

mental studies, as well as the conservation of the DIS sequence in

wild-type HIV-1, indicate that mutations in the DIS region lead to

reductions in viral fitness [56,57,58]. By incorporating conserva-

tive assumptions about this reduction in viral fitness into our

invasibility model, we found that mutations in the DIS region are

not likely to invade for either HIV-1 or TIP (see Text S1).

Taken together, our analyses of mutant invasibility models

made the following predictions for HIV-1 and TIP co-evolution

(summarized in Table 1): 1) the HIV-1 replication rate will stay at

approximately the wild-type level; 2) the TIP-encoded inhibitory

factor, if any, will evolve toward a non-functional state (D = 0); and

3) there is a conflict between selection pressures on HIV-1 and TIP

regarding the production ratio, P, i.e. selection on HIV-1 favors low P

values, but selection on TIP favors high P values. This final conflict

sets the stage for a co-evolutionary arms race.

Co-evolutionary dynamics
To explore the co-evolutionary dynamics arising from the

conflict in selection pressure on P, and to test the predictions of the

invasibility analysis, we constructed a multi-strain deterministic-

stochastic hybrid model. In the model, each HIV-1 or TIP strain

has a unique digital sequence, representing the relevant part of the

genome of HIV-1 or TIP (Fig. 3A), and the genotype-phenotype

mapping is determined using a recently developed string-matching

approach to modeling co-evolution [41,49]. The parameters P and

D (phenotypes) are determined by the degree of matching between

the digital sequences of the HIV-1 and TIP (genotypes) infecting a

cell (GH,P and GH,D in the HIV-1 genome, and GT,P and GT,D in

the TIP genome, shown in Fig. 3A and explained in the Model

Overview section); the parameter A is determined by the match

between the HIV-1 genotype and a genotype that allows HIV-1 to

replicate at a maximal rate (GH,A in HIV-1 genome and GMax in

TIP genome, Fig. 3A). Therefore, mutations in the genomes lead

to altered intracellular parameters, which in turn lead to changes

in the fitness of the mutant virions (see Methods section for details).

Simulation results confirmed the predictions from the invasion

analysis with respect to parameters A and D, which stayed close to

1 and 0, respectively (Fig. 3B). The dynamics for parameter P are

more complex as a result of the opposing selection pressures on

HIV-1 and TIP. Considering the broader dynamics of co-

evolution, we found that the system exhibited a robust pattern of

three distinct phases, namely the ‘preliminary’ phase (PR), the

‘escape’ phase (ES) and the ‘set-point’ phase (SP). Below, we first

describe the three phases in a typical realization of the model

(shown in Fig. 3B), then we describe the sensitivity analysis that

tested the robustness of the results to the assumptions made.

The ‘preliminary’ (PR) phase is characterized by the dominance

of both the wild-type HIV-1 and the wild-type TIP in the viral

population. During this phase, the average P value (mean across all

extant infected T cells, denoted ,P.) was high (close to the

maximum value of 30) and the HIV-1 viral load was reduced to a

low level, as a result of the high efficacy of the genetically

engineered wild-type TIP strain. However, mutant HIV-1 strains

were generated rapidly within the host. Those mutant HIV-1

particles that lead to a lower P value when co-infecting a T cell

with the wild-type TIP (i.e. those with mutations in the GH,P

region in Fig. 3A) possess selective advantages over the wild-type,

and thus rose in frequency within the host. Eventually the ‘full

escape’ mutant (highlighted as heavy black line in Fig. 3B), whose

genomic sequence in the GH,P region is completely different from

the GT,P region of the wild-type TIP, was generated. The level of

the full-escape HIV-1 mutant increased exponentially after

emergence, since it is completely released from suppression by

TIP. Consequently ,P. decreased rapidly at the end of the PR

phase. In contrast to the rising genetic diversity of the HIV-1

population, the TIP mutants with one point mutation in the GT,P

region (i.e. the one-point TIP mutants) were generated quickly but

remained at a relatively low level during the PR phase. Two-point

TIP mutants arose repeatedly throughout the PR phase, but were

cleared rapidly from the system each time. TIP evolutionary

dynamics differed from HIV-1 in the PR phase because TIP

mutants were not selectively advantageous, due to their low fitness

when the HIV-1 population was dominated by the wild-type

strain.

The ‘escape’ (ES) phase is the time period during which the full-

escape HIV-1 mutant dominates the population. The HIV-1 viral

load increased to a high level at the beginning of this phase, as a

result of HIV-1 escape from suppression by TIP. The average P

value in the host (,P.) dropped almost to 0. However, because

the majority of the HIV-1 infected T cells were infected with the

full-escape mutant, the extant TIP mutants (the 1-point and 2-

point TIP mutants) that partially match the full-escape HIV-1

genome possessed selective advantages over the wild-type TIP at

the beginning of the ‘ES’ phase, and thus increased in frequency.

These mutants gave rise to 3-point TIP mutants, which possessed

further advantage in P. Once the 3-point TIP mutants became the

dominant strains, the HIV-1 full-escape mutant was replaced by

another strain that has the lowest match with the three-point TIP

mutant in their representative genome sequences for parameter P.

This marked the end of the ES phase; diverse HIV-1 and TIP

strains were present in relatively high abundance, resulting in

intermediate values of ,P. fluctuating around 15.

The system then entered the ‘set-point’ (SP) phase where HIV-1

and TIP settled into a stable coexistence, in which the abundance

Table 1. Optimal parameter values for HIV-1 fitness and TIP fitness, respectively, in the mutant invasibility models.

Parameters Value for the wild-type strains HIV-1 optimum TIP optimum

P 30 0 (min) 30 (max)

D 0 0 0

A 1 1 N/A

doi:10.1371/journal.pcbi.1002744.t001
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Figure 3. Co-evolutionary dynamics of HIV-1 and TIP. (A) A schematic for the genotype-phenotype mapping in a dually infected T cell. The
values of parameters P and D are calculated by comparing the appropriate genome regions of HIV-1 (GH,P and GH,D, respectively) with the
corresponding genome regions of TIP (GT,P and GT,D, respectively). The parameter A is calculated by comparing the appropriate genome region of
HIV-1 (GH,A) to a genome sequence that allows HIV-1 gRNA to replicate at the maximal rate (GMax). (B) A typical realization of the co-evolutionary
dynamics of HIV-1 and TIP. The dynamics can be broken into three phases depending on the dominant HIV-1 strain: the ‘preliminary’ phase (PR)
dominated by the wild-type HIV-1 strain, the ‘escape’ phase (ES) dominated by the full-escape mutant, and the ‘set-point’ phase (SP) dominated by
the match-escape pairs described in the text. The top two panels show the viral loads per mL (in log scale) for each HIV-1 strain and each TIP strain,
respectively. The curve for each strain is color-coded according to their genetic distance to the wild-type strain: Blue, cyan, red, green, black denote
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of each HIV-1 or TIP strain oscillated around a fixed point, and

the populations of HIV-1 and TIP were each dominated by two

strains (the uppermost red lines in Fig. 3B, with mean long-term

abundances at least 10-fold higher than any other strains). By

examining the genome sequences of these strains in the regions

determining P values, we found that they consist of two matched

pairs that are opposite to each other, i.e. each dominant HIV-1

strain has a perfectly matched TIP strain, and the two such pairs

are complete mismatches of each other. Therefore, the oscillatory

dynamics between the two dominant strains of HIV-1 and TIP

can be understood as a ‘match-escape’ cycle: a TIP strain increases

in abundance by matching the dominant HIV-1 strain, the HIV-1

strain that escapes the control of this TIP is selected, leading to

selection for the other TIP strain, and so on. The oscillatory

dynamics resulted in average P values oscillating near an

intermediate value of around 15. The set-point viral load of

HIV-1 is at 15 virions/mL on average; in contrast, this model

predicts a mean HIV-1 viral load of 100 virions/mL in the absence

of TIP. As emphasized in earlier work [30,37], this sustained

suppression of HIV-1 is possible because of the high abundance of

TIP particles, which leads to a majority of T cells being TIP-

infected. As a result, a large proportion of T cells infected with

HIV-1 at set-point are co-infected with TIP, and HIV-1

replication is robustly suppressed.

To test whether the results above are robust to changes in the

genomic structure, we performed simulations for models assuming

higher genome dimensions instead of binary sequences, and

different lengths of genome regions corresponding to the

phenotypes of interest. For all simulations performed, TIP

evolution was able to catch up with HIV-1 after the emergence

of the full-escape mutant, leading to establishment of the set-point

phase. We quantified the average HIV-1 and TIP viral loads, the

average values of P, D and A, and the duration of each phase of the

dynamics, and found that the qualitative behavior of the system is

robust to changes in genome structure (Fig. 4). There were some

quantitative changes in the dynamics, which accord with our

intuitive understanding of the system. Longer representative

genome lengths led to lower HIV-1 viral loads (Fig. 4A), since it

took longer for an HIV-1 escape mutant to arise in those

simulations (Fig. 4B). In contrast, higher genome dimensions led to

higher HIV-1 viral loads. This is because, during the set-point

phase, more HIV-1 mutant strains were available to escape the

dominant TIP, however, only one TIP strain was able to match

the dominant HIV-1 strain. In essence, the HIV-1 population had

a larger genotype space in which to escape suppression by TIP,

leading to a lower set-point ,P. (Fig. 4E).

The fraction of dually infected cells is an important parameter

determining the viability of TIP, as well as other evolutionary

outcomes for HIV-1 [59]. In peripheral blood of untreated HIV-1

patients, the frequencies of multiple infection among all infected

CD4+ T cells are 2.6% and 7.0% for acute and chronic infection,

respectively [60]. Substituting our model parameters into a model

for HIV-1 superinfection following the approach developed in a

recent study [59], we obtain a prediction that 2.6% of all infected

the wild-type and the mutants with one-, two-, three-point mutations and the full-escape mutants, respectively. The bottom three panels show the
mean values of parameter P, A and D across the population of dually infected cells at each point in time. For these simulations, the genome was
modeled as a binary string, and the length of the genome region corresponding to each parameter was 4 sites.
doi:10.1371/journal.pcbi.1002744.g003

Figure 4. The co-evolutionary dynamics are qualitatively robust to variation in genome size and dimension. We tested model
sensitivity to the dimension of genome space (i.e. the number of values each genome site could have; denoted dimG) and the genome length (i.e.
the number of sites corresponding to each parameter. The co-evolutionary dynamics of HIV-1 and TIP were characterized by 7 attributes: the mean
HIV-1 and TIP viral loads (panel (A) and (B)) over the whole simulation (3000 days), the lengths of the PR phase and the ES phase (panel (C) and (D)),
and the time-average mean values of P, A and D of the population of dually infected cells (panel (E), (F) and (G)) during the ‘set-point’ phase. Data
points and error bars correspond to the mean and standard deviation of 100 realizations of the model for those parameter values.
doi:10.1371/journal.pcbi.1002744.g004
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cells will be multiply infected, indicating that our assumed

superinfection rate maps onto the lower range of observed values

(Text S1). In our simulations, the frequency of T cells dually

infected by HIV-1 and TIP among all infected cells is around

0.4%, which is much lower than the predicted value. This is

because the majority of dually infected cells would be infected by

two TIPs (which is not considered in our model), as a result of

effective TIP suppression of HIV-1 viral loads. To explore the

potential impact of higher frequencies of dual infection, we

extended the model to include the superinfection of HIV-1

infected cells by TIP, and further tested the sensitivity of our

results to increases in the superinfection rate. Importantly, the

three-phase co-evolutionary dynamics are robust to changes of

superinfection rate and the frequency of dually infected cells (Text

S1). Increasing the rate of the superinfection rate leads to higher

TIP fitness and therefore a lower minimum value of P (Pthreshold)

required for TIP invasion (compare Eqn.(4) in the Method section

and Eqn.(S15) in Text S1), suggesting that TIP performs better

when the superinfection rate increases. However, increasing the

rate of superinfection shortens the time required to generate the

HIV-1 full-escape mutant, because higher frequency of dually

infected cells leads to higher selection pressure on HIV-1 to

escape, but the TIP always catches up and the system approaches

the same set-point as in our main analysis.

Alternative genotype-phenotype maps
A fundamental challenge in modeling evolutionary processes is

defining the genotype-phenotype relationship. For the current

analysis, this is most important for determining the parameter P

(phenotype) from the GHP and GTP regions of the HIV-1 and TIP

genomes (genotype). In the results presented above, we assumed a

linear relationship between the production ratio, P, and the

percentage of match between the sequences of HIV-1 and TIP

genomes (red line in Fig. 5A). Here we tested how the co-

evolutionary dynamics are affected by two alternative assumptions

about this genotype-phenotype mapping: the production ratio, P,

is either a concave-down function or a concave-up function of the

percentage of genomic match (blue and green curves in Fig. 5A).

In almost all scenarios, the co-evolutionary dynamics arising

from these alternative genotype-phenotype maps were qualitative-

ly similar to the model with a linear function (Fig. S2). In general,

models assuming a concave-down function showed better TIP

performance (longer time to HIV-1 escape, shorter duration of

escape phase, and higher set-point ,P.) than models assuming

linear and concave-up functions (Fig. S2A). This occurred because

the concave-down function gave higher P values for relatively

poorly-matching genomes, favoring TIP in the co-evolutionary

arms race. Accordingly, the average HIV-1 viral load was always

lowest in models assuming a concave-down function. In contrast,

for models assuming a concave-up function, it is possible for HIV-

1 to escape control by TIPs completely, and for TIPs to be

eliminated from the system, when the length of GHP is 4 or greater

(Fig. 5B).

A representative simulation showing the elimination of TIP is

shown in Fig. 5C. The PR phase showed dynamics similar to those

seen before (Fig. 3B), but after the full-escape HIV-1 mutant

dominated the HIV-1 population at the beginning of the ES

phase, the extant TIP strains (i.e. the wild-type and the one-point

mutant strains) declined in abundance and eventually were

eliminated from the system. This happened because the produc-

tion rate of TIP in the dually infected cells was lower than the

minimum required for persistence. We calculated the minimum

threshold value of the production ratio to be Pthreshold = 2.80 (shown

as dotted line in Fig. 5A). When the length of GHP is 4 or 5 sites,

both the wild-type TIP and the 1-point TIP mutant give

P,Pthreshold when co-infecting a cell with the full-escape HIV-1

mutant (Fig. 5A), causing these TIP strains to decline to extinction.

Note that low levels of 2-point TIP mutants are sometimes present

at the beginning of the ES phase. In the simulation shown in

Fig. 5C, the frequency of T cells infected by these 2-point TIP

mutants was not high enough to be further infected by HIV-1 to

become dually infected cells, as needed to complete the life-cycle of

TIP. However, in some simulations the abundance of these 2-point

TIP mutants was slightly higher due to the stochasticity of the

system, which enables these mutants to complete their life cycle so

that TIP persists in the host. As a generality, the ability of TIP to

persist in the system depends on whether the TIP strains present at

the onset of the ES phase are able to persist in a system dominated

by the full-escape HIV-1 mutant. Under the assumptions of a

concave-up function with representative genome length of more

than 3, TIP extinction is possible because low P values arising from

coinfection of cells with extant TIP strains and the full-escape

HIV-1 strain.

In the simulations above, we assumed that HIV-1 and TIP

mutate at the same rate and that mutations of HIV-1 and TIP

change the phenotypic parameters in dually infected cells in the

same way. The assumption of equal mutation rate is appropriate,

since TIP genomes are replicated by the exact same mechanisms

as HIV-1 genomes. However, since TIP interacts with HIV-1 in

dually infected cells in a complicated way involving processes such

as genome-protein binding, mutations in the TIP and HIV-1

genomes may impact differently on changes of the phenotypic

parameters in dually infected cells. Focusing on the crucial

interactions that determine the parameter P, one way that HIV-1

can escape TIP repression is by a mutation in the Tat gene which

changes the Tat protein conformation. This change may lead to a

lowered binding affinity for extant TIP genomes, thus giving the

mutated HIV-1 strain a selective advantage over other strains. In

order to regain the higher binding affinity, TIP needs to mutate

the Tat-binding region on its genome. Hence, in this particular

scenario, the parameter P is determined by mutations in HIV-1

and TIP that act at the amino acid and nucleotide levels,

respectively. Therefore, the rate of change in parameter P could be

differentially affected by mutations in the HIV-1 and TIP

genomes. To account for this complexity, we examined the

probability of TIP elimination as a function of the rate at which

TIP mutation changes the crucial phenotypic parameter P relative

to HIV-1 mutation. We found that the system is broadly robust to

variation in the relative rate of phenotypic changes in HIV-1 and

TIP (Fig. S3). When a concave-up function was used for the

genotype-phenotype mapping, so that elimination of TIP is a

possibility, the relative rate of evolution has a strong influence on

the outcome in an intuitive manner: the probability of TIP

elimination is lower when TIP mutates faster than HIV-1 in the

phenotypic space, and vice versa (Fig. S3). When other genotype-

phenotype mappings were used, the probability of TIP elimination

was unaffected by relative mutation rate.

Fitness costs of HIV-1 mutations
In the simulations above, we have assumed that HIV-1 mutants

in the GH,P region are as competent as the wild-type strain in

terms of replication and infection of new cells. However, mutations

in the HIV-1 genome change the properties of HIV-1 viral

particles, and in general, they are likely to reduce viral replication

and infectivity [61,62,63,64]. If the fitness cost of these reductions

is greater than the gain from lowering the production ratio, then

HIV-1 mutations lowering the value of P would not be selected,

i.e. HIV-1 would not be able to escape from TIP. We analyzed the
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impact of a mutation-induced reduction in HIV-1 fitness on the

selection of the full-escape mutant. To make the analysis clear, we

considered the scenario when HIV-1 mutants with mutations in

the GH,P region have decreased viral infectivity. Reduction in

HIV-1 fitness arising from other mechanisms would lead to similar

results. We performed invasion analysis for the mutant, and found

a tradeoff between lowering P values and decreasing infectivity

(Fig. 6). For a given decrease in P, if the corresponding reduction

in infectivity is smaller than a threshold value (white line in Fig. 6),

then Reff,H.1 and the mutant with lower P value is selected (the

shaded area in Fig. 6); otherwise, the wild-type HIV-1 strain is

maintained in the system. To confirm that mutant HIV-1 strains

are not selected if the fitness reduction (via reduced infectivity) is

too high, we simulated the multi-strain model under the simple

Figure 5. Effects of alternative genotype-phenotype mappings. (A) Different assumptions of genotype-phenotype mapping, showing how
the production ratio parameter P depends on the proportion of sites that match on the relevant genome regions GHP and GTP. The function form is

P~(1{C(GH,P,GT ,P))h:Pmax. The values of the exponential constant are: h = 0.5 for the concave-down curve in blue, h = 1 for the straight line in red,
h = 2 for the concave-up curve in green. The black dotted line shows the minimum P value required for mutant TIP to invade the system (invasion
threshold, Pthreshold). (B) The probability that TIP population was eliminated, under different assumptions of genotype-phenotype mapping (color-
coding is same with (A)) for different lengths of the representative genome for parameter P. Each bar reflects the outcome of 100 runs of the multi-
strain model. (C) A representative model realization showing the elimination of TIP. In this model, only variations in P are considered with parameters
A = 1 and D = 0 fixed for all cells, and the length of representative genome is 4.
doi:10.1371/journal.pcbi.1002744.g005
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assumption that all HIV-1 mutants have a 30% reduction in

infectivity, with all other parameter values the same as in Fig. 5C.

In stark contrast with the dynamics shown in Figs. 3C and 5C, the

viral populations were dominated by the wild-type HIV-1 and the

wild-type TIP throughout the simulation, and no escape events

occurred (Fig. S4). The average P value remained fixed at 30, and

the set-point HIV-1 viral load was reduced to 5 virions/mL.

The surface shown in Fig. 6 can be viewed as a fitness

landscape for HIV-1 mutants during the PR phase, given a

tradeoff between decreasing P and maintaining HIV-1 infectivity.

Generation of a full-escape mutant requires several mutational

steps. If each step results in a fitness gain, i.e. moving uphill on

the surface, then the full-escape strain can be generated by

Darwinian selection (route 1 in Fig. 6). However, if one or more

mutants along the mutational trajectory have lower fitness than

their parents, i.e. deleterious mutations, then the generation of

the full-escape mutant requires a low-probability event such as

double mutation or stochastic tunneling to cross the fitness valley

(route 2 in Fig. 6) [65,66]. This suggests a design principle for

TIPs: it is desirable to design TIPs so that HIV-1 must mutate its

conserved genome region (which may induce a high fitness cost to

HIV-1) to reduce the production ratio (P). In this way, the

selection of HIV-1 escape mutants can be prevented due to the

high cost associated with HIV-1 mutation. Interestingly, with

regard to their effect on HIV-1 infectivity, the mutations along

route 1 act synergistically to reduce the fitness of HIV-1 (i.e.

exhibiting negative epistasis), while the mutations along route 2

act antagonistically (i.e. exhibiting positive epistasis). Previous

work has shown that the majority of deleterious mutations act

antagonistically in HIV-1, i.e. with positive epistasis [67]. This

property of HIV-1 genetics suggests that the generation of a full-

escape mutant of HIV-1 may be constrained by the current

design of TIPs.

Discussion

In this study, we have used mathematical models to analyze the

co-evolutionary dynamics of HIV-1 and a gene therapy delivered

by a conditionally-replicating vector (CRV) in the peripheral

blood within a host. We have considered the proposed therapeutic

interfering particle (TIP) as a case study for this analysis, which has

enabled us to build on recent modeling studies, and has provided

specificity and context for our findings. We have investigated

questions about HIV-1 escape mutants and virulence evolution,

and the potential to achieve long-term viral suppression despite

viral evolution, as raised in recent CRV studies [19,21,30,35].

Co-evolution of HIV-1 and TIP
Linking models describing dynamics at both the cellular and the

within-host level, we have shown that, under most conditions, the

TIP strategy is able to circumvent the evolution of resistance by

HIV-1. The TIP population is able to keep pace with the evolution

of HIV-1, and thus maintains effective suppression of the HIV-1

viral load in the long-term. The long-term dynamics of HIV-1 and

TIP have characteristics of a co-evolutionary arms race (also

termed as ‘Red-Queen’ dynamics) [68]. HIV-1 mutants that

escape TIP suppression have a fitness advantage and rise in

frequency, leading to selection for TIP mutants that ‘catch up’ and

can suppress the HIV-1 mutants. For the broad range of

parameter values and model structures that we analyzed, this

cycle of escape and catch-up continues indefinitely, and the TIP

population results in long-term control of the HIV-1 infection

within a host. This finding points to the potential for a new

generation of CRV-delivered gene therapy agents, which co-opt

the viral evolutionary process to design robust and ‘evolution-

proof’ disease control.

This distinctive pattern of co-evolutionary dynamics is driven

by selection on the production ratio, P, which describes the fold

increase in genomic RNA production for TIP relative to HIV-1.

The invasion analysis shows that selection on this parameter acts

in opposing directions for the HIV-1 and TIP populations in a

co-infected host (Fig. 2). TIP benefits from high values of P, while

HIV-1 benefits from low values and hence is under selection to

acquire substitutions that escape TIP by decreasing the degree of

genome matching. Then the TIP population is under selection to

catch up with HIV-1 mutation to restore a high P value. This

arms race underlies the characteristic three-phase dynamics that

arise as a robust pattern in our co-evolutionary simulations

(Fig. 3). In the preliminary phase at the onset of treatment, HIV-1

mutants appear and rise in frequency due to the lower P they

experience. Soon a ‘full-escape’ HIV-1 mutant appears, which

experiences no suppression by the wild-type TIP, and rises to

dominate the population throughout the escape phase. For most

scenarios we considered, this is followed by the set-point phase

where the TIP population is able to mutate to match the HIV-1

strains, and sustained suppression of the HIV-1 viral load is

achieved.

We explored the circumstances under which TIP could not

establish a set-point phase, and found that the TIP population

could be eliminated when two conditions are met. First, any fitness

cost associated with HIV-1 mutations must be sufficiently low that

the HIV-1 mutational steps to escape the repression of TIP are

always increasing in fitness (Fig. 6). Second, once the full-escape

HIV-1 mutant takes over the population, the production ratios (P)

in cells dually infected by extant TIP strains and the full-escape

HIV-1 must be below the invasion threshold, i.e. the production of

TIP particles is too slow to sustain the TIP population (Fig. 5C). In

addition, we find that when elimination of TIP becomes possible,

Figure 6. The fitness trade-off for HIV-1 if decreasing the
production ratio, P, leads to reduction in viral infectivity. The
surface shows the value of the effective reproductive number for an
HIV-1 mutant with the given parameters invading a system with wild-
type HIV-1 and TIP at equilibrium. The white line shows the
combinations of parameters that give Reff,H = 1. The shaded area shows
parameter regions where the mutant HIV-1 has a higher fitness than the
wild-type HIV-1 (Reff,H.1). Routes 1 and 2 (blue and red, respectively)
show two different mutational trajectories by which the ‘full-escape’
mutant could be generated; route 2 is much less likely to be completed
because it includes a fitness valley with lower fitness than the wild-type
strain.
doi:10.1371/journal.pcbi.1002744.g006
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the probability of elimination is decreased if TIP mutations change

the parameter P faster than HIV-1 mutations, and vice versa.

Our analysis reveals particular design principles that would

enhance the efficacy and safety of TIPs, and we propose that

similar principles would apply to other CRV gene therapies.

Consideration of the factors that enable TIP to persist leads to the

finding that the mapping between genotype and phenotype for the

production ratio has paramount importance for the efficacy of

TIPs. In simulations with a concave-down curve for the mapping

(Fig. 5A), i.e. a lower reduction in P for intermediate mutants that

lead to the full-escape mutant, a lower HIV-1 viral load is

observed relative to simulations with either a linear or a concave-

up curve (Fig. S2A). Therefore, a high priority in designing the

TIP must be that it maintains a high P value when it coinfects T

cells with HIV-1 strains that have acquired a few escape mutations

(i.e. so the TIP and HIV-1 genome regions corresponding to P

match partially). A related conclusion is that design principles that

increase the minimum value of P, such that even full-escape

mutants of HIV-1 do not reduce P below the critical value Pthreshold,

will lead to much greater evolutionary robustness.

Another facet of the proposed TIP design is to encode an

inhibitory factor that interferes with the HIV-1 life cycle to reduce

HIV-1 viral loads [46,47]. However, the model analysis shows that

both HIV-1 and TIP attain maximal fitness when this factor is

non-functional, i.e. with no inhibition (D = 0; Fig. 2). This leads to

the prediction that both populations will evolve to diminish the

activity of the inhibitory factor, which is borne out by simulation

results in the multi-strain co-evolutionary model (Fig. 3B). Since

HIV-1 viral load can be suppressed when the inhibitory factor is

non-functional [30], we propose that the inhibitory factor is not

needed for the TIP design. Note that earlier modeling work

predicted that mutants that upregulate HIV-1 gRNA production

in dually infected cells (i.e. those with D,0) are selectively more

advantageous than mutants with no inhibition (D = 0) [30], which

differs from our results here. This discrepancy arises because we

added the assumption, based on experimental evidence [52,53],

that elevated HIV-1 gRNA production induces costs to HIV-1

fitness by reducing T cell lifetime.

The possible adverse consequences of co-evolution are consid-

ered by analyzing the selection exerted by the presence of TIP on

the replication coefficient A of HIV-1. Our analysis suggests that

the optimal genome replication rate of HIV-1 is dependent on

how the infected cell lifetime changes as the HIV-1 genome

replication increases, i.e. the function V. Under our model

formulation, if the death rate of HIV-1 infected cells increases

linearly with increases in HIV-1 replication, HIV-1 intra-host

fitness remains the same and the presence of TIP does not select

for HIV-1 strains with higher replication rate. If the death rate of

HIV-1 infected cells increases non-linearly with increases in HIV-1

replication (as assumed in our main analyses), and the curvature a
of this relationship is moderate or stronger, then the optimal HIV-

1 replication rate stays near the wild-type level in the presence of

TIP. However, if the curvature is weak, so that HIV-1 intra-host

fitness decreases only slightly as HIV-1 replication rate increases

beyond the wild-type level, then the optimal rate of HIV-1

replication can be higher than the wild-type rate in the presence of

TIP. Empirical evidence for the relationship between HIV-1

replication rate and infected cell lifetime is not conclusive. Some

indirect evidence suggests that higher viral replication rates incur a

significant cost in cell lifetime [52,53]; however, one study

reported that HIV-1 replication induces little cytopathic effect

on host cells [69], and two other studies showed that the death rate

of HIV-1 infected cells appears to be unaffected by the presence of

cytotoxic CD8+ T cells [70,71]. Further experiments examining

how HIV-1 fitness changes with variation in the HIV-1 genome

replication rate would enable more precise predictions.

Model assumptions and limitations
As for all models, we made simplifying assumptions during

model construction. Most importantly, the representations of the

HIV-1 and TIP genomes, and the relationship between these

genotypes and the resulting cellular phenotypes, are highly

simplified. In the multi-strain co-evolutionary model, each genome

is represented by a digital sequence, and mutations in the genomes

are mapped to changes in phenotype (i.e. the values of parameters

D, P and A) via simple matching algorithms. We have ignored

epistatic interactions and assumed that mutations affect the

phenotypic parameters additively. In reality, changes in phenotype

are affected by viral mutations in complicated ways, which often

are not understood completely; this is necessarily the case for

therapies like TIP that are still hypothetical. However we note that

the digital sequences in our model are an abstract representation

of any information encoded in the genome, and are not restricted

to representing a particular set of nucleotide loci. Hence any

genome properties that influence the phenotype of interest can be

represented. To test the robustness of our conclusions, we

performed extensive sensitivity analyses for different parameter

values, genome structures, genotype-phenotype mappings and

superinfection rates. The results show that the qualitative behavior

of the system does not depend on these assumptions, beyond the

broad findings discussed above. Other factors recently shown to

influence the infection-limiting effects of defective interfering

particles, such as dose-dependent responses [26], host cell

limitation [72], and potential synergy with the host immune

response [73], should be explored in future work.

The assumptions pertaining to the parameter P merit special

attention, given that parameter’s central role in the co-evolution-

ary dynamics. We have assumed that P is determined by the

degree of matching between relevant regions on the HIV-1 and

TIP genomes. This assumption is motivated by the necessary

interactions between the TIP genome and HIV-1-encoded

elements that regulate genome replication [37]. However, some

factors proposed to contribute to TIP gRNA over-expression, such

as TIP’s shorter genome length or re-engineered splice sites [30],

may not be influenced directly by the HIV-1 genotype present in

the cell. If these factors do act to increase P in a manner

independent of HIV-1, then they will have the effect of raising the

minimum value of P corresponding to a full-escape mutant. As

noted above, this will benefit TIP in the co-evolutionary process,

making it more robust to elimination and HIV-1 escape. Our

assumption that P is fully controlled by the interaction between

genomes is thus conservative with respect to estimating the benefits

of TIP.

In our model, TIP competes with HIV-1 for resources through

dimerization with HIV-1 gRNA, and we have assumed that TIP

and HIV-1 gRNAs dimerize randomly in dually infected cells.

Under this assumption, the efficacy of TIP would be undermined

if the DIS of HIV-1 or TIP mutates to reduce the rate of

heterodimer formation. Our analysis showed that, if the cost of

DIS mutation to viral fitness is greater than the gain from lowering

the rate of heterodimer formation, then mutations in the DIS are

unlikely to arise. Currently available experimental data support

this conclusion (see Text S1). However, the margin of safety in

these results was small, so if fitness costs for TIP are less than

projected or if other mechanisms favor mutations in the DIS

region, then this could be a vulnerability of the proposed TIP

strategy. We suggest that robustness of heterodimer formation be a

focus of on-going research on TIP design. Further experimental
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investigation is needed to test the stability of the DIS regions of the

HIV-1 and TIP genomes in dually infected cells, and alternative

approaches to increasing TIP production relative to HIV-1 should

be explored.

In the model, we have only considered infection of productively

infected T cells in the peripheral blood. There are two other sites

of HIV-1 production that can play important roles in the dynamics

of infection: long-lived cells and tissue cells. It has been shown that

long-lived cells may have a significant influence on viral dynamics

during the chronic phase of infection [74]. Modeling both short-

and long-lived cells is beyond the scope of our study, but we have

performed simulations for models considering only long-lived cells,

and found that the three-phase dynamics are robust to this change

though they occurred on a longer time scale (data not shown).

Infections of tissue cells pose greater challenges. Data show higher

multiplicity of infection for HIV-1 in tissue cells, probably resulting

from formation of virological synapses [75]. Our model does not

consider cells infected with multiple strains of HIV-1 or of TIP,

since the intracellular interactions among different strains of HIV-

1 and TIP are not currently understood. Intuitively, the majority

of infecting viruses in these multiply-infected cells would be TIPs,

because of the much higher viral load of TIP. We speculate that

this would lead to broader and stronger selective pressure on HIV-

1 due to the presence of different TIP variants within the cell.

Therefore, the period of the ‘preliminary’ phase would be shorter,

and the three-phase dynamics would remain. However, we

emphasize that there are fundamental uncertainties about how

these processes would play out, and the genetic exchange between

viral populations in tissues and in peripheral blood will make the

co-evolutionary dynamics more complex. Because a substantial

amount of HIV-1 replication occurs in tissues, these dynamics

could have significantly impact on the prediction of sustained

control of infection in a patient. This prediction should be

evaluated further using models that explicitly consider multiply-

infected cells in tissue, and the interactions between viral

populations in different body compartments, once the biological

processes are understood in sufficient detail.

Broader implications
The evolutionary principles developed in this study, including

the robust pattern of three-phase dynamics of evolutionary escape

and catch-up, provide general lessons for other CRV-based gene

therapies against HIV-1. All CRVs transmit from cell to cell via

the same basic mechanism of complementation with viable viral

genomes, and therefore the within-host model is a general

representation of the population dynamics of CRV and HIV-1

strains in a patient. The cellular model was constructed based on

the proposed properties of TIPs in particular, but is easily related

to other systems by noting its key outputs. As shown in the

Methods, the two quantities that link the cellular level to the

within-host level are the HIV-1 production rate in both singly and

dually infected cells, and the CRV production rate in dually

infected cells. These are the fundamental properties of any CRV

or mobilization-competent gene therapy system.

From a conceptual perspective, the various strategies of

constructing CRVs differ only in how these key quantities change

depending on the molecular mechanisms of CRV replication and

interference with HIV-1. The evolutionary principles regarding

the competition and inhibition between CRVs and the HIV-1

population at the within-host level are the same. Our findings, in

conjunction with those of Weinberger et al. [37] and Metzger et al.

[30], show that any CRV-based approach has potential to achieve

sustained control of an HIV-1 infection if it has the following traits:

1) the CRV is replicated at a sufficiently high level in dually

infected cells that it can be persistently transmitted within a host; 2)

the CRV competes with HIV-1 for essential resources required for

replication and packaging, creating an evolutionary conflict that

leads to a co-evolutionary arms race between HIV-1 and CRV; 3)

the CRV is designed such that a) it targets a conserved region of

HIV-1, and consequently HIV-1 escape mutants cannot be

generated due to the high fitness cost, or b) when the full-escape

mutant takes over the HIV-1 population, the extant CRV strains

are able to catch-up with the full-escape HIV-1, by replicating at a

sufficiently high level in cells infected by the full-escape mutant.

These general conclusions suggest design principles to ensure the

evolutionary robustness of viral gene therapies based on CRVs.

In addition, due to the similarities between CRVs and naturally-

occurring defective interfering particles, the results in this study

also shed light on the dynamics of defective interfering particles

observed both in experimental studies [31] and in natural

populations [76]. Earlier theoretical studies have examined the

effect of defective interfering particles on viable viral populations

[72,77,78,79]. In particular, Kirkwood and Bangham developed a

mathematical model to understand the evolutionary dynamics of a

wild-type virus with its associated defective particles in serial

passage experiments, and concluded that the effects of defective

particles were intrinsically unpredictable [77]. However, their

model assumed that the defective interfering particles were

generated constantly from the extant viable viral population and

only interfered with their parent strains. Mutants generated within

lineages of defective interfering particles, and the potential impacts

of interference between multiple strains, were not considered in

their model. By accounting for the possibility of continuous

evolution in the interfering particle population, our study shows

that the system can approach a sustained co-evolutionary arms

race as observed experimentally [32].

The rapid evolution of HIV-1 poses fundamental challenges for

all strategies of treatment and prevention. In the long term, HIV-1

evolution can compromise the efficacy of these treatments and

even render them useless. This phenomenon is well-known for

ARV drug therapies [6,44] and vaccine candidates [8], but is

increasingly recognized for gene therapies as well. For example,

Aviron et al. recently analyzed the evolutionary dynamics of HIV-1

for another class of gene therapy approaches, in which T cells are

genetically modified such that they confer resistance to HIV-1

infection and replication [50]. The dynamics of HIV-1 under this

gene therapy show many parallels with the dynamics of HIV-1

under other non-evolving therapies, such as ARVs. During the

initial period of the treatment, the wild-type HIV-1 remains the

dominant strain, and the viral load is effectively suppressed. More

and more HIV-1 mutants are generated, until the full-escape

mutant appears and quickly takes over the virus population. Once

the full-escape mutant arises, the genetically modified T cell does

not exert its protective effects anymore, and HIV-1 returns to its

pre-treatment abundance [50]. Our study suggests that gene

therapies based on CRVs, such as the proposed TIP, could

continue to inhibit HIV-1 viral production by keeping pace with

HIV-1 evolution even after the full-escape mutant is generated.

This phenomenon, which mirrors the co-evolutionary dynamics of

an immune system, stands in stark contrast with drug treatments

and ‘static’ gene therapy approaches [44,50]. In addition, in the

modeling study by Metzger et al., it has been shown that CRVs can

potentially act synergistically with ARVs [30]. Since ARVs and

CRVs target different components of the HIV-1 life cycle, it is

likely that a combination of ARV and CRV therapies would

reduce the risk of generation of HIV-1 mutants that escape ARVs

and CRVs. Furthermore, our results suggest potential for rational

design of gene therapies based on conditionally-replicating vectors
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to avoid undesirable evolutionary outcomes—in keeping with

recent calls to construct ‘evolution-proof’ approaches to disease

control [80]. By harnessing the remarkable evolutionary potential

of CRVs in this way, this new class of gene therapy agents could

contribute a valuable new dimension to the increasingly successful

effort to combat the HIV-1 pandemic worldwide.

Methods

The intracellular model
Following the framework proposed by Metzger et al. [30], the

intracellular model keeps track of the abundance of single-

stranded HIV-1 and TIP genomic RNAs, as well as dimerized

diploid genomes including the HIV-1 homozygote, the TIP

homozygote, and the HIV-1-TIP heterozygote. We assume that

the level of single-stranded HIV-1 gRNA reaches equilibrium

quickly, and that packaging materials are present in excess [30], so

the dimerization of genomic RNAs is the limiting step in the

process of viral particle formation. Thus, the rate of formation of

new HIV-1 virions can be approximated as proportional to the

rate of RNA dimerization. The detailed model equations are

presented in the Text S1.

We define two parameters, y and r to link the intracellular

model to the within-host model, as in previous work [30]:

1) y is the ratio of the HIV-1 viral production rate in a dually

infected cell over the rate in an HIV-1 infected cell.

2) r is the ratio of the TIP viral production rate over the HIV-1

viral production rate in a dually infected cell.

The expressions for y and r are related to intracellular

parameters by [30]:

y~
1{D

1zP
, r~P2 ð1Þ

where P is the production ratio for genomes and D is the fraction

of inhibition, as defined in the main text. The replication

coefficient A is the ratio of the HIV-1 replication rate for a

mutant genotype to the replication rate of the wild-type HIV-1

genotype. According to Eqn. (1), the value of y decreases with

increases in D and P, because either stronger inhibition on HIV-1

gRNA production or higher CRV production that competes with

HIV-1 production will lead to lower HIV-1 viral production. The

value of r depends on the value of P, but not D. This is because

inhibition of HIV-1 gRNA production limits the gene products

available to both HIV-1 and CRV, therefore changes in D affect

HIV-1 and CRV production similarly. For an arbitrary HIV-1

genotype, the production rate of HIV-1 virions in dually infected

cells, relative to the production rate of wild-type HIV-1 in singly-

infected cells, is Ay. The production rate of TIP virions in dually

infected cells, relative to the production rate of the wild-type HIV-

1 in singly-infected cells, is then Ayr.

Note that the parameters P, A, D, y and r are subscripted in the

multi-strain model below in order to specify the value for

particular HIV-1 and/or TIP strains. For example, A0 denotes

the A value for the wild-type HIV-1 (‘0’ is used throughout to

denote the wild-type), and P01 denotes the P value in a cell dually

infected by the wild-type HIV-1 and the 1st TIP mutant strain.

The general within-host model
To model the dynamics of viral populations within individual

hosts, we consider the infection dynamics of CD4+ T cells by m

strains of HIV-1 and n strains of TIP. We assume that each T cell

can only be infected by a single strain of HIV-1 and a single strain

of TIP. The dynamics are described by the following system of

ODEs:

dU

dt
~l{k:

Xm

i~0

xi
:U{k:

Xn

j~0

yj
:U{d:U

dHi

dt
~k:xi

:U{V(Ai):Hi

dTj

dt
~k:yj

:U{k:
Xm

i~0

xi
:Tj{d:Tj

dMij

dt
~k:xi

:Tj{V(Ai
:(1{Dij)):Mij

dxi

dt
~p:Ai

:Hizp:Ai
:
Xn

j~0

yij
:Mij{c:xi

dyj

dt
~p:

Xm

i~0

rij
:yij

:Ai
:Mij{c:yj

i~0,1,2,::::::m, j~0,1,2,::::::n

ð2Þ

Uninfected T cells (U) are generated at a constant rate l, and

cleared from the blood at rate d. The ith HIV-1 and jth TIP strains

infect T cells at rate k, resulting in HIV-1 infected T cells (Hi) and

TIP infected T cells (Tj), respectively. TIP infected T cells can be

further infected by HIV-1, becoming dually infected cells (Mij).

Because TIP genomes do not encode any protein that is toxic to

the cell or that induces immune response, the death rate of TIP

infected cells is assumed to be the same as the death rate of

uninfected cells. The death rates of HIV-1 infected cells and dually

infected cells are modeled as a concave-up function (V(), described

below) depending on the HIV-1 genomic RNA (gRNA) produc-

tion rates (A in singly infected cells and A(1-D) in dually infected

cells as shown in Eqn S1 and S3 in Text S1).

Viral particles of the ith HIV-1 strain (xi) are produced from both

singly and dually infected cells, whereas viral particles of the jth TIP

strain (yj) are produced only from dually infected cells. The rate of

HIV-1 viral production in cells infected only with wild-type HIV-1

is p. The rates of viral production in cells infected with mutant

HIV-1 strains, and in dually infected cells, are scaled relative to p
by the relationships given in the previous section on intracellular

dynamics. Both HIV-1 and TIP particles are cleared from the

system at a constant rate, c.

Dependence of cell death rate on virion production. The

accumulation of HIV-1 viral proteins within a cell and the

depletion of host resources due to HIV-1 replication have cyto-

toxic effects leading to increased death rate of infected T cells

[52,53]. In addition, the number of viral peptides presented at the

cell surface increases as viral protein production rises, triggering

the immune response of the host [52]. All of these factors likely

contribute to an accelerating increase of cell death rates as HIV-1

viral protein production increases. We therefore assume that the

death rate of HIV-1 infected and dually infected T cells is a

concave-up function V(A) of the production rate of HIV-1

genomic RNA. This assumption follows models in previous studies

[54,55]. In the absence of TIP, this formulation leads to an

optimal HIV-1 replication rate, i.e. the wild-type production rate p
[81].

Specifically, we modeled the function V() using the following

equation:
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V(z)~b:ea:zzc ð3Þ

where z is the production rate of HIV-1 gRNAs in infected cells

(relative to wild-type HIV-1 in singly-infected cells), a reflects the

stiffness of the curve and b and c are constants that reflect

biological properties of the death of infected cells. In most of our

analyses, we set a = 1, but we conduct a sensitivity analysis where

the value of a is varied (Fig. S1). The function V() must satisfy

two biological conditions: 1) the death rate of T cells infected by

the wild-type HIV-1 is 0.7 per day [12,13]; and 2) the wild-type

HIV-1 has optimal replicative fitness in the absence of TIP.

These two conditions translate into the following mathematical

statements:

1) V(1) = 0.7. Note that A = 1 for wild-type HIV-1 infected cells.

2) A/V(A) attains its maximum value at A = 1. The expression,

A/V(A), is proportional to the burst size of HIV-1 infected

cells, which is optimized for wild-type HIV-1 in the absence

of TIP [81].

The values of b and c can be calculated under these two

conditions for a given value of a, as shown in Table 2.

The minimum value of P for TIP persistence,

Pthreshold. The value of Pthreshold is determined as the smallest

value of P that allows TIP to persist in a HIV-1 infected host. We

first derive the reproduction number for TIP (R0,T) when it is

introduced in a host where HIV-1 is at equilibrium. It is calculated

using the next-generation matrix approach for a system in which

only HIV-1 is present at equilibrium. The expression for R0,T is:

R0:T~
k2:p:A:r:y:x0:U 0

c:V(A:(1{D)):(k:x0zd)
ð4Þ

where x9 and U9 are the equilibrium level of HIV-1 virions and

uninfected T cells, respectively, in the absence of TIP.

Since the requirement for TIP to persist in the system is R0,T.1,

the value of Pthreshold can be calculated by solving the value of P for

R0,T = 1 given Eqn. (4). If we assume D = 0, A = 1, i.e. the optimal

values of D and A (Table 1), the value of Pthreshold is 2.80.

The HIV-1 mutant model. The HIV-1 mutant model is a

simplified version of the General Model, which considers only the

wild-type HIV-1, the wild-type TIP and a mutant HIV-1 strain.

The full ODEs are listed in Text S1 (Eqns. S7). To analyze

whether the HIV-1 mutant strain is able to invade a system with

the wild-type HIV-1 and wild-type TIP at equilibrium, the

effective reproductive number for the HIV-1 mutant (Reff,H) can

be calculated using the next-generation matrix approach [51]:

Reff :H~
k:p:A1

:V(A1
:(1{D10)):U�

(c:V(A1
:(1{D10)){k:p:y10

:A1
:T0
�):V(A1)

ð5Þ

where U* and T0* are, respectively, the equilibrium levels of

uninfected T cells and T cells infected by the wild-type TIP in the

absence of the HIV-1 mutant. This expression has been confirmed

by simulation to exhibit the expected threshold behavior where the

HIV-1 mutant strain can invade only if Reff,H.1.

The TIP mutant model. Similarly, the TIP mutant model is

a simplified version of the General Model, which only considers

wild-type HIV-1, wild-type TIP and a mutant TIP strain. The full

ODEs are listed in Text S1 (Eqns. S8). The effective reproductive

number for the TIP mutant (Reff,T) is derived assuming the wild-

type HIV-1 and wild-type TIP are at equilibrium before

introducing the TIP mutant:

Reff :T~
r01

:y01
:V(A0

:(1{D00))

r00
:y00

:V(A0
:(1{D01))

ð6Þ

Once again, this expression has been confirmed by simulation.

The modified HIV-1 mutant model – adding costs in

infectivity. In the modified HIV-1 mutant model, we assume

that there is a cost (r) in viral infectivity for the mutant HIV-1

Table 2. Description of parameters used in the model.

Parameter Description Value Source

l Birth rate of uninfected CD4+ T cells (U) 31 [cells/(mL6day)] [82]

D Death rate of uninfected CD4+ T cells (U) 0.02 [1/day] [83]

k Infection rate of activated CD4+ T cells per virion 1.87561024 [mL/(virions6day)] [30]

L Production rate of virions released from HIV-1 infected cells 140 [1/day] [84]

C Clearance rate of HIV-1 (x) and TIP (y) virions 30 [1/day] [85,86]

m Genome mutation rate 361025 per nucleotide

a Stiffness of cell death rate curve 1{

b Constant in cell death rate function 0.2575{{

c Constant in cell death rate function 0{{

A Replication coefficient. The relative rate of gRNA replication
of a HIV-1 strain compared to the wild-type in the absence of TIP.

0.5–1.5

P Production Ratio. The ratio of TIP gRNA production over
HIV-1 gRNA production in a dually infected cell (M).

0–30 {{{

D Fraction of inhibition (D.0) or upregulation (D,0). The inhibition/
upregulation of HIV-1 production exerted by the inhibitory factor
encoded by TIP. When D = 0, the factor is non-functional

21–1 {{{

{Sensitivity analyses were performed on this parameter (Fig. S1). Choice of this parameter value does not affect qualitative results in this study.
{{See Methods section for the derivation of parameter values.
{{{Parameters that can be genetically designed.
doi:10.1371/journal.pcbi.1002744.t002
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strain. The reduced viral infectivity is modeled as (1-r)*k, where k

is the wild-type infectivity. The other components of the model

follow the HIV-1 mutant model described above, and in Eqns. S7.

For this analysis, we considered changes in parameters P and r,

and set A = 1 and D = 1. The effective reproductive number for the

HIV-1 mutant in this modified model (Reff,mH) is:

Reff :mH~
k1
:p:U�

c:V(1){k1
:p:y10

:T0
� ð7Þ

where, as before, U* and T0* are the equilibrium levels of

uninfected T cells and the T cells infected by the wild-type TIP in

the absence of the HIV-1 mutant, respectively.

The multi-strain model. In the multi-strain model, each

HIV-1 or TIP strain is represented by a unique genome sequence.

The genomes of HIV-1 and TIP determine the intracellular

parameters A, P and D. Mutations in the genome sequences result

in changes in intracellular parameters, which in turn lead to

changes in the y and r parameters linking the intracellular model

and the within-host model. The dynamics of the multiple strains of

HIV-1 and TIP within hosts are modeled by a stochastic-

deterministic hybrid approach, combining ordinary differential

equations (ODEs) with stochastic events [41].

The genome sequences of HIV-1 and TIP are represented as

having u and v variable sites, respectively. For our main analysis

the dimension of the sequences is set to 2, i.e. each site in a

sequence can take two values, 0 or 1. To assess the sensitivity of the

results to this assumption, the genome dimension is set to 3 or 4 in

the sensitivity analysis shown in Fig. 4. The intracellular

parameters P, D and A are calculated from the genomic sequence

as follows.

The parameters P and D arise from interactions between the

HIV-1 and TIP genomes or their gene products, so we calculated

their values using a very simple model that assesses the degree of

matching between the two genomes. We first define a function,

C(S1,S2), to be the proportion of sites in genome sequences S1 and

S2 that are identical. Then, the parameter P in a dually infected

cell is calculated as:

P~(1{C(GH,P,GT ,P))h:Pmax ð8Þ

where GH,P and GT,P are the genome regions that determine

parameter P in the HIV-1 and TIP genomes, respectively, and h is

the exponent determining the shape of this genotype-phenotype

mapping. For Figs. 3 and 4 h is set to 1; for Fig. 5, it is set to 0.5, 1

and 2.

Similarly, the parameter D in a dually infected cell is calculated

as:

D~1{2:C(GH,D,GT ,D) ð9Þ

where the factor 2 allows D to be negative, such that the TIP up-

regulates the production of HIV-1 genomic RNAs, and the

dependence on C is assumed to be linear. In this model, D can

vary in the range of [21,1].

The parameter A is determined by the HIV-1 genome only, and

is defined relative to the replication rate of the wild-type HIV-1

strain. We calculated this parameter as:

A~2:C(GH,A,Gmax) ð10Þ

where the factor 2 allows A to be greater than 1, i.e. the mutant

can have a higher replication rate than wild-type HIV-1 (though

recall from the section on cell death rates that this does not

necessarily mean higher fitness). GMax is the sequence that gives the

highest HIV-1 gRNA replication rate (A = 2 in this study). We set

the GMax is [1,1,1,1] and the GH,A for the wild-type HIV-1 is

[0,1,0,1].

In the model simulation, we assume the levels of uninfected T

cells, wild-type HIV-1 infected T cells and wild-type HIV-1 virions

are in equilibrium before introducing TIP. The wild-type TIP is

introduced in the ODEs on day 0. For each time interval (Dt = 1

day), the ODE system is numerically integrated, and then mutant

strains are generated as stochastic events. We assume that for each

event where a T cell is infected by HIV-1 or TIP, every position of

the HIV-1/TIP genome has a probability m to mutate. Since the

probability of generating a double mutation for a short sequence

space (u and v,20) in one day is extremely low, only single

mutations are considered in the model. We first approximate the

numbers of T cells newly infected by the ith HIV-1 strain (DHi) and

the jth TIP strain (DTj) during the time interval, Dt, by

DHi~int(k:xi
:U :Dt), DTj~int(k:yj

:U :Dt)

where the function int(m) returns the biggest integer number that is

less than m.

We then calculated the number of newly infected cells in which

the ith HIV-1 strain mutated to the ath HIV-1 strain (ĤHia) by

drawing a random number from the binomial distribution,

ĤHia~B(DHi,m). Similarly, we calculated the number of cells

newly infected with TIP in which the jth TIP strain mutated to the

bth TIP strain (T̂Tjb) by drawing a random number from the

binomial distribution, T̂Tjb~B(DTj ,m). The copy numbers of the

existing infected T cells are then updated as:

Hi~Hi{ĤHia, Ha~HazĤHia for HIV{1,

Tj~Tj{T̂Tjb, Tb~TbzT̂Tjb for TIP:

If the newly-generated mutant strain does not exist in the ODEs, it

is added into the ODE system with the appropriate initial

condition.

Extinction of rare strains was modeled using a quasi-extinction

approximation. To implement this, we checked the abundance of

each variant of infected T cell on each day. When the copy

number of a particular variant is below 1026 copies/mL (roughly 1

to 10 copies of virions in a host), this variant was removed from the

ODE system. For each simulation, this procedure was repeated for

a total of 3000 days (approximately 8 years).

Supporting Information

Figure S1 The optimal values of parameters A and D do
not vary significantly with variation in the curvature of
the cell death function, V(), or production ratio P. (A)

Different shapes of the function V(A), which describes the

dependence of T cell death rate on the production rate of HIV-

1 gRNA (A), used for sensitivity analysis. The solid black line

denotes a linear function. Other lines arise from the function

V(A)~b:ea:Azc with a values shown in the legend and the values

of b, c were chosen such that V(1) = 0.7. (B) The ranges of

variation in optimal replication coefficient, A, and fraction of

inhibition, D, under different assumptions of the cell death

function V(A) shown in panel (A). Each line is color coded

according to the assumptions on V(A) shown in panel (A). The
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optimal combinations of A and D are calculated with P varying

from 5 to 30 (lines in the figure; circles correspond to values P = 5,

10, 20, 30, from left to right). The dashed lines show the range of

variation in optimal A and D for each assumption on V(A); the red

shaded area shows the range of variation for the functional form

(a = 1) used in other simulations.

(TIF)

Figure S2 Co-evolutionary dynamics are qualitatively
similar for models with alternative assumptions of
genotype-phenotype mapping, although models assum-
ing a concave-down function show better TIP perfor-
mance. Five attributes are used to characterize the co-

evolutionary dynamics of HIV-1 and TIP: the average HIV-1

and TIP viral loads (panels (A) and (B)) over the whole simulation

(3000 days), the lengths of the PR phase and the ES phase (panels

(C) and (D)) and the time-averaged mean value of P (panel (E))

during set-point phase. The values of D and A in these simulations

are set to 0 and 1, respectively. 100 runs are performed for each

data points. Data points and error bars correspond to the mean

and standard deviation of 100 realizations of the model for those

parameter values. Note that large standard deviations in data

points for the concave-up function are due to TIP elimination

events.

(TIF)

Figure S3 Effect of variations in the relative rate that
TIP and HIV-1 mutations change the phenotypic pa-
rameter P. The probability of TIP elimination decreases as the

relative rate of TIP evolution increases, when a concave-up

genotype-phenotype mapping function is used. When the linear or

concave-down mapping functions are used, the relative rate has no

effect on TIP elimination. We represented the different rate at

which mutations impacted the phenotypic parameter P by varying

the mutation rate of the TIP genome in our genome-matching

model. The ratios of TIP mutation rate over the HIV-1 mutation

rate considered are 1/5, 1/2, 1, 2 and 5 in the simulations. For

each ratio, 100 model runs were performed and the proportion of

runs that exhibited TIP elimination is shown. Parameters A and D

were kept constant at 1 and 0, respectively, in these simulations.

(TIFF)

Figure S4 HIV-1 mutants are not selected when the cost
of HIV-1 mutation is high. In this simulation, we assumed that

the infectivity of all HIV-1 mutants is reduced by 30% compared

to the wild-type infectivity. This assumption leads to reduced

fitness for those HIV-1 mutants that are intermediate steps to the

full-escape mutant as shown in Fig. 6. All other parameters are the

same as in Fig. 5C.

(TIFF)

Text S1 Supplementary material.

(PDF)
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