A random walk in Hamming space (Fig. S1) is described by the following equation:
\[
\frac{\partial P_n}{\partial t} = P_{n-1} \frac{N - n + 1}{N} + P_{n+1} \frac{n + 1}{N} - P_n
\]

where \(P_n \) is the probability of being at the Hamming distance \(n \) at time \(t \) (at \(t = 0 \) \(P_n = \delta_{n,0} \)). The solution approaches the binomial distribution as \(t \to \infty \) (see Figure S2):
\[
P_n(t) = 2^{-N} \frac{N!}{(N - n)!n!} \left(1 - e^{-2t/N}
ight)^n \left(1 + e^{-2t/N}
ight)^{N-n}
\]

It should be noted that a self-avoiding random walk (which occurs when a host develops a complete immunity against the previously encountered strains) closely approximates the random walk considered above for parameters that we use in the paper (the genome size is \(N = 30 \), and the total number of infections is about 100).
Figure S1. Random walk in Hamming space. Left: continuous time steps, right: discrete time steps.
Figure S2. Self-avoiding random walk in Hamming space. x-axis denotes time steps and y-axis denotes the mean distance from origin (averaged over 1000 trials). Blue and red curves correspond to the random and self-avoiding random walks, respectively. Dashed lines correspond to the standard deviation.