Carbon and water balances for young fruits of platyopuntias

Park S. Nobel* and Erick De la Barrera

Department of Organismic Biology, Ecology, and Evolution, University of California, Los Angeles, CA 90095-1606, USA

*Corresponding author, e-mail: psnobel@biology.ucla.edu

Received 27 July 1999; revised 13 December 1999

Questions relating to transpired versus retained water for fruits, the xylem versus the phloem as water supplier to the fruits, and the importance of fruit photosynthesis for fruit dry mass gain were examined in the field for 6 species of platyopuntias (Nopalea cochenillifera, Opuntia ficus-indica, O. megacantha, O. robusta, O. streptacantha and O. undulata), cacti with flattened stem segments (cladodes). For plants with fruits midway between floral bud appearance and fruit maturation, transpiration was greater at night for the cladodes, as expected for Crassulacean acid metabolism (CAM) plants, but greater during the daytime for the fruits of all 6 species. Nevertheless, net CO2 uptake by fruits of these platyopuntias occurred predominantly at night, as expected for CAM plants. The water potential of the young fruits (average of −0.41 MPa) was higher than that of the cladodes (average of −0.60 MPa), indicating that water entered the fruits via the phloem rather than via the xylem. Solution entry into the fruits via the phloem supplied the water lost by transpiration and allowed for increases in fruit fresh mass (daily transpiration averaged 3.2-fold higher than daily water content increases), while the accumulating solutes were apparently polymerized to account for the higher water potentials of the fruits compared with the cladodes. The phloem thus acts as the sole supplier of water and the main supplier of dry mass (90%) to such young fruits of platyopuntias.

Introduction

Fruits of many species are green during much of their development, suggesting that photosynthesis by the fruits can contribute to their gain in biomass (Jones 1981, Pavel and DeJong 1993). Net CO2 uptake by young fruits ranges from 3% of that for fully expanded leaves for avocado (Persea americana; Whiley et al. 1992) to about 35% for orange (Citrus sinensis; Moreshet and Green 1980). Fruits require a supply of water, which generally enters developing organs via the xylem. For tomato (Lycopersicon esculentum), the proportion of water entering the fruit via the xylem decreases as the fruits mature (Ho et al. 1987). When developing organs are not photosynthetically self-sufficient, water also enters via the phloem together with solutes. For instance, substantial amounts of water enter the fruits of cotton (Gossypium hirsutum) via the phloem (van Iersel et al. 1994). Indeed, the water potential of young cotton fruits can be higher than that of the leaves (Trolinder et al. 1993), so water cannot enter the fruits by flowing energetically downhill in the xylem. A backflow of water can occur in the xylem from the fruits to the stem for apple (Malus pumila; Lang 1990) and grape (Vitis vinifera; Lang and Thorpe 1989).

The fruits of the prickly pear cactus Opuntia ficus-indica remain green until the final stages of maturation, suggesting that they are photosynthetically active. In fact, daily net CO2 uptake occurs throughout fruit development for O. ficus-indica (Inglese et al. 1994). CO2 uptake by the fruit occurs primarily at night via Crassulacean acid metabolism (CAM), just as for the cladodes (flattened photosynthetic shoot segments) of this platyopuntia (Nobel 1988). However, the phloem apparently supplies most of the dry matter and all of the water requirements for the fruits of O. ficus-indica throughout their development (Nobel et al. 1994). It is not known whether this is characteristic of other platyopuntias.

The water and carbon balances for fruits of O. ficus-indica have been investigated primarily in the laboratory. Moreover, transpiration of its fruits has not been reported, so the overall water balance is not known, as is also the case for fruits of various other species; therefore, carbon and water relations for the fruits of O. ficus-indica were examined in the field. To test the generality of the results, fruits of 4 other platyopuntias were studied as well as those of the closely related Nopalea cochenillifera [sometimes called
Opuntia cochenillifera (Britton and Rose 1963, Benson 1982, Scheinvar 1995), although its flower morphology differs from that of opuntias. Preliminary observations of fruit growth were made in 1998 to determine size criteria for each species so that gas exchange measurements could be made on young green fruits approximately midway between floral bud appearance and fruit maturation, which occurs about 3 months later (Gutterman 1995, Nerd and Mizrahi 1995). During the development of Opuntia fruits, often called cactus pears, the flower receptacle that surrounds the inferior ovary becomes the peel of the fruit (Pimienta Barrios 1990, Nerd and Mizrahi 1995). Indeed, the relatively large sizes of the fruits midway through development and the apparent spatial uniformity of their peels facilitated measurements of transpiration and CO₂ uptake. Three questions were addressed: (1) what is the ratio of water transpired to water retained in the developing fruit; (2) does the phloem or the xylem supply the water?; and (3) how much of the daily dry mass gain is contributed by net CO₂ uptake by the fruits?

Materials and methods

Six species of Cactaceae that had been planted as individual cladodes in August 1990 were examined at the Agricultural Research Station, University of California, Riverside, California. Measurements were made on 5 plants each of Nopalea cochenillifera (L.) Salm-Dyck (accession no. 1269 of Texas of A&M University, Kingsville, TX), Opuntia ficus-indica (L.) Miller (accession no. 1279), O. megacantha Salm-Dyck (accession no. 1292), O. robusta Wendland in Pfeiffer (accession no. 1240), O. streptacantha Lemaire (accession no. 1248) and O. undulata Griffiths (accession no. 1267); all plants were irrigated weekly. Data reported here were obtained in May and June 1999 approximately midway between flower bud appearance and fruit maturation, which occurred 10–14 weeks later for a particular fruit; transpiration and net CO₂ exchange were usually measured simultaneously for a particular species. Preliminary observations in 1998 indicated that at this developmental stage, which occurs 2–4 weeks after the flower petals abscise, the fruits are approximately two-thirds of their final length and one-third of their final fresh mass.

Transpiration per unit surface area was measured approximately every 2 h for fruits over 24-h periods using a LI-1600 steady-state porometer (Li-Cor, Lincoln, NE, USA); similar measurements were made on the underlying cladodes near midday and midnight. The acrylic top of the cuvette was removed to allow placement of the cuvette near the middle of a fruit or near the middle of east-facing surfaces of unshaded, terminal cladodes using a 4-mm-thick foam-rubber gasket with a hole 1.5 cm in diameter to achieve a good seal. Stomatal frequency was determined at various lengths for each species. The daily transpiration per fruit was equated to the integrated daily transpiration per unit area times the fruit area, assuming that the fruits were prolate spheroids (formed by the rotation of an ellipse about its major axis). The surface area of a prolate spheroid equals 0.5πd² + 0.5πd[sin⁻¹{(1 - d²/2l²)⁰.⁵}]²{(1 - d²/2l²)⁰.⁵}, where d is the diameter at mid-fruit and l is the fruit length. Such an area of a smooth surface is essentially equivalent to the area basis used for expressing the gas exchange data. The daily water gain for the same 5 fruits as used for transpiration plus 5 others of similar size was estimated from increases in their length over 8- to 10-day periods encompassing the transpiration measurements using regressions of fruit water mass (fresh mass − dry mass) against fruit length. Length was measured using a vernier caliper (readable to 0.02 mm) aligned with fine indelible ink marks on the two extreme ends of a fruit. For the regression equations, 12 fruits of various lengths were harvested from each species, weighed in the field to obtain fresh mass, sliced, and then dried at 80°C in a forced-draft oven until no further weight change occurred (generally 3 days) to obtain dry mass.

To measure organ water potential, a cork borer 14 mm in diameter was used to sample young fruits and the cladodes on which they occurred at mid-organ near midday; no significant changes in the cladode-to-fruit water potential difference were observed at other times of the day, in part reflecting the succulent nature of both organs. After slicing off the cuticle and epidermis, discs approximately 4-mm-thick were cut with a razor blade and their water potential was determined with an SC-10 thermocouple psychrometer (Decagon Devices, Pullman, WA, USA) after equilibration for 4 h. Such discs contained both outer photosynthetic tissue and inner water-storage tissue, which have experimentally indistinguishable water potentials for both cladodes and fruit (Nobel et al. 1994). For each species, data were obtained within 5 days of gas exchange measurements for fruits of similar size.

The rates of net CO₂ uptake of both fruits and the cladodes on which they occurred were measured approximately every 2 h over 24-h periods with a Li-Cor LI-6200 portable photosynthesis system. The top of the cuvette was replaced with an acrylic plate having a 2-cm cylindrical extension of 1.5 cm internal diameter, whose margin was covered with a foam-rubber gasket to facilitate sealing to organ surfaces. Measurements were made at random locations on the fruits and on the east-facing surfaces of unshaded, terminal cladodes bearing the fruits. Net CO₂ uptake per fruit was converted to a dry mass gain assuming that 1 mole of CO₂ was equivalent to 30 g of dry mass, as for a carbohydrate. The daily dry mass gains of the same fruits as used for gas exchange studies plus 5 others of similar size were estimated from increases in their length over 8- to 10-day periods encompassing the transpiration and net CO₂ uptake measurements using regressions of fruit dry mass against fruit length obtained from 12 fruits of various lengths for each species.

Data were analyzed pairwise using Student’s t-test.

Results

The young fruits chosen for measurement of gas exchange and water potential for the 6 platyopuntias ranged in mean...
length from 2.8 cm for *N. cochenillifera* to 7.1 cm for *O. undulata* (Table 1). Surface areas were calculated assuming that the fruits were prolate spheroids and using the measured lengths and diameters. The mean daily changes in fruit length, which ranged from 0.23 mm for *N. cochenillifera* to 0.58 mm for *O. robusta* (Table 1), together with regression equations of length versus fresh mass or versus dry mass were used to determine daily water and dry mass gains for the fruits.

Transpiration by the young fruits tended to increase during the afternoon, to decrease during the night, and to increase again during the morning for all 6 species (Fig. 1). Maximal transpiration rates for the fruits averaged 414 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) and minimal values averaged 114 \(\mu \text{mol m}^{-2} \text{s}^{-1} \). The daily transpiration per unit fruit surface area, obtained by integrating the instantaneous values over 24 h, ranged from 16 \(\text{mol m}^{-2} \text{day}^{-1} \) for *N. cohenillifera* to 30 \(\text{mol m}^{-2} \text{day}^{-1} \) for *O. undulata* (Table 2). The total daily transpiration per fruit, obtained by multiplying the transpiration per unit area by the area per fruit (Table 1), ranged from 0.5 g day\(^{-1}\) for *N. cochenillifera* to 3.2 g day\(^{-1}\) for *O. undulata* (Table 2). Based on the changes in fruit length, the daily gain in water per fruit ranged from 0.1 g day\(^{-1}\) for *N. cochenillifera* to 0.9 g day\(^{-1}\) for *O. megacantha* and *O. robusta* (Table 2). Daily transpiration ranged from two to sixfold greater and averaged 3.2-fold greater than the daily gain in water content by the fruits.

Contrary to the case for the fruits (Fig. 1), transpiration was higher at night than during the daytime for the cladodes of all 6 species (Table 3). The water vapor (stomatal) conductance was much higher for the cladodes at midnight, averaging 140 \(\text{mmol m}^{-2} \text{s}^{-1} \), than at midday, when it averaged 12 \(\text{mmol m}^{-2} \text{s}^{-1} \) \((P < 0.01; \) Table 3). On the other hand, the day/night difference in water vapor conductance for the fruits was not as great, averaging 37 \(\text{mmol m}^{-2} \text{s}^{-1} \) at midnight and 11 \(\text{mmol m}^{-2} \text{s}^{-1} \) at midday for the 6 species \((P < 0.01; \) Table 3). The stomatal frequency was less for the young fruits than for the cladodes on which

Table 1. Morphology for fruits of platyopuntias approximately midway between floral bud appearance and fruit maturation. Length changes were determined for each fruit over an 8- to 10-day period; lengths and diameters are mean values over that period. Data are means ± se (n = 5 fruits on different plants for each species for length, diameter, and area and n = 10 fruits for length changes).

<table>
<thead>
<tr>
<th>Species</th>
<th>Length (cm)</th>
<th>Diameter (cm)</th>
<th>Area (cm(^2))</th>
<th>Daily length change (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. cochenillifera</td>
<td>2.76 ± 0.13</td>
<td>2.01 ± 0.05</td>
<td>16.0 ± 0.9</td>
<td>0.23 ± 0.02</td>
</tr>
<tr>
<td>O. ficus-indica</td>
<td>5.50 ± 0.24</td>
<td>4.02 ± 0.11</td>
<td>63.8 ± 2.8</td>
<td>0.49 ± 0.05</td>
</tr>
<tr>
<td>O. megacantha</td>
<td>5.20 ± 0.19</td>
<td>3.79 ± 0.13</td>
<td>57.3 ± 3.7</td>
<td>0.53 ± 0.08</td>
</tr>
<tr>
<td>O. robusta</td>
<td>4.39 ± 0.11</td>
<td>4.04 ± 0.16</td>
<td>54.8 ± 3.6</td>
<td>0.58 ± 0.06</td>
</tr>
<tr>
<td>O. streptacantha</td>
<td>4.42 ± 0.19</td>
<td>3.95 ± 0.10</td>
<td>53.6 ± 3.3</td>
<td>0.46 ± 0.03</td>
</tr>
<tr>
<td>O. undulata</td>
<td>7.10 ± 0.12</td>
<td>3.14 ± 0.06</td>
<td>59.0 ± 1.6</td>
<td>0.45 ± 0.04</td>
</tr>
</tbody>
</table>

Fig. 1. Transpiration for young fruits of platyopuntias: (A) *N. cochenillifera*, (B) *O. ficus-indica*, (C) *O. megacantha*, (D) *O. robusta*, (E) *O. streptacantha* and (F) *O. undulata*. Daytime maximum air temperatures and relative humidities on clear days averaged 28.9°C and 28%, respectively, and night-time minimum ones averaged 13.2°C and 77%, respectively. Data are means ± se (n = 5 fruits on different plants for each species).
Table 2. Daily water balance for young fruits of platyopuntias. Data for transpiration are means ± se (n = 5 fruits on different plants for each species). Daily water gain was based on regressions involving changes in fruit length over 8- to 10-day periods (n = 10 fruits, Table 1).

Table 3. Transpiration and water vapor conductances for cladodes and water vapor conductances for young fruits of platyopuntias during the day and the night. Measurements were made within 1 h of midday or midnight for terminal cladodes or young fruits; data are means ± se (n = 5 plants). Air temperature and relative humidity averaged 28.0°C and 32% near midday and 15.2°C and 73% near midnight; cladode and fruit temperatures generally were within 1.0°C of air temperature.

Table 4. Stomatal frequencies for cladodes and young fruits of platyopuntias. Data are means ± se (n = 5 plants).

Table 5. Water potentials for cladodes and young fruits of platyopuntias. Data are means ± se (n = 5 fruit-cladode pairs on different plants for each species).
Fig. 2. Net CO₂ uptake for young fruits of platyopuntias: (A) N. cochenillifera, (B) O. ficus-indica, (C) O. megacantha, (D) O. robusta, (E) O. streptacantha and (F) O. undulata. Data were generally obtained simultaneously with those in Fig. 1 and are presented as means ± SE (n = 5 fruits on different plants for each species).

Discussion

Although flower buds of O. ficus-indica take up CO₂ mainly during the daytime in the C₃ mode (Acevedo et al. 1983), fruits of various ages take up CO₂ mainly at night in the CAM mode (Inglese et al. 1994), as was observed here for young fruits midway between floral bud appearance and fruit maturation. Indeed, young fruits of the 4 other species of Opuntia and of N. cochenillifera also took up CO₂ mainly at night. The fruits considered were green and approximately two-thirds the length and one-third the mass of mature fruits. The total daily net CO₂ uptake per unit area by the fruits was about 38% of that of the cladodes on which they occurred, which is higher than for studies comparing fruits and leaves of C₃ species (Moreshet and Green 1980, Whiley et al. 1992). For the 6 species of platyopuntias considered, daily net CO₂ uptake by the young fruits accounted for an average of 10% of the daily dry mass gain of the fruits. At a similar stage, young green fruits of peach (Prunus persica) take up 15% of the daily carbohydrate requirement (Pavel and DeJong 1993); averaged over the entire growing season, photosynthesis of exposed peach fruits accounts for 9% of their total growth and maintenance carbohydrate requirements.

Transpiration by the young platyopuntia fruits was higher during the daytime than at night. Such a pattern was a consequence of the higher fruit temperatures and hence greater driving forces for water loss during the daytime. In particular, the drop in water vapor mole fraction from the fruits to the air averaged 0.0253 at midday and 0.0046 at midnight. On the other hand, the water vapor conductance at midnight was about threefold higher than at midday for the young fruits compared with 12-fold higher for the cladodes. The magnitude of the water vapor conductance near midday was similar for both cladodes and young fruits.

Table 6. Daily carbon balance for young fruits of platyopuntias. Data are means ± SE (n = 5 fruits on different plants for each species). Total daily dry mass gain was based on regressions involving changes in fruit length over 8- to 10-day periods (n = 10 fruits, Table 1).

<table>
<thead>
<tr>
<th>Species</th>
<th>Daily net CO₂ uptake per unit area (mmol m⁻² day⁻¹)</th>
<th>Daily dry mass gain from net CO₂ uptake per fruit (mg day⁻¹)</th>
<th>Total daily dry mass gain per fruit (mg day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. cochenillifera</td>
<td>95 ± 19</td>
<td>4.5 ± 0.9</td>
<td>71</td>
</tr>
<tr>
<td>O. ficus-indica</td>
<td>121 ± 15</td>
<td>23.1 ± 2.9</td>
<td>212</td>
</tr>
<tr>
<td>O. megacantha</td>
<td>85 ± 28</td>
<td>14.4 ± 4.8</td>
<td>164</td>
</tr>
<tr>
<td>O. robusta</td>
<td>155 ± 15</td>
<td>25.4 ± 2.5</td>
<td>260</td>
</tr>
<tr>
<td>O. streptacantha</td>
<td>114 ± 13</td>
<td>18.3 ± 2.0</td>
<td>221</td>
</tr>
<tr>
<td>O. undulata</td>
<td>174 ± 14</td>
<td>30.8 ± 2.5</td>
<td>224</td>
</tr>
</tbody>
</table>
so the four-fold greater increase in water vapor conductance at night by the cladodes reflected their twofold greater stomatal frequency and apparently a twofold greater individual stomatal area at night than for the stomata in young fruits. In any case, the daily transpiration by the young fruits of all 6 species was greater than their daily net gain in water. Hence, 67–85% of the water imported into the fruits of the 6 species of platyopuntia was transpired compared with only 10–20% for tomato fruits (Araki et al., 1997). Nevertheless, the rates of transpiration and maximal water vapor conductances of the fruits of the platyopuntias were similar to values for avocado (Blanke and Whiley 1995), strawberry (Fragaria spp.) and tomato (Shirazi and Cameron 1993).

The water potentials of the young fruits were substantially higher than the water potentials of the underlying cladodes for all 6 species of platyopuntias. Thus water could not flow energetically downhill from the underlying cladodes to the fruits, so the xylem is not the supplier of water for the developing fruits, consistent with previous conclusions for O. ficus-indica under laboratory conditions (Nobel et al. 1994). For young fruits of comparable ages and sizes, the water potential difference between the fruits and the cladodes of O. ficus-indica was 0.17 MPa in the laboratory and somewhat greater at 0.24 MPa in the field. Besides the case for O. ficus-indica, the phloem must also supply water for the developing fruits of N. cochenillifera, O. megacantha, O. robusta, O. streptacantha and O. undulata, just as for fruits of apple (Lang 1990, Mills et al. 1997), Asian pear (Pyrus serotina; Behboudian et al. 1994), avocado (Blanke and Whiley 1995), cotton (Trolinder et al. 1993, van Iersel et al. 1994), grape (Lang and Thorpe 1989) and tomato (Ho et al. 1987). Perhaps the lower degree of stomatal opening for the young fruits compared with the cladodes reflects the more efficient supplying of soil water to the cladodes via the xylem compared with the supplying of shoot water to the young fruits via the phloem. For instance, the mean flow rate along the xylem generally is about sixfold greater than along the phloem (Nobel 1999).

Based on the observed water and carbon balances for the developing fruits, dry mass characteristics of the solution apparently supplied by the phloem can be calculated (Table 7). For the 6 species, the phloem apparently supplied 0.64–3.76 g of water per day and 66–235 mg of dry mass per day. This is consistent with a percentage dry mass for the phloem solution of 4.9–9.4% for the 6 species, or an average of 6.8% (Table 7). Using severed stylets of a scale insect (Dactylopius opuntiae), phloem sap has been collected from terminal cladodes of O. ficus-indica (Wang and Nobel 1995, Wang et al. 1997). This solution has osmotic pressures of 0.90–0.98 MPa, osmolalities averaging 340 mOsm kg−1, and a mean percentage dry mass content of 7.6%, which is approximately one-third as concentrated as the phloem sap of various other species (Hayashi and Chino 1990, Riens et al. 1991, Weiner et al. 1991). Thus the estimated daily requirement of dry mass and water by the young developing fruits of the 6 species of platyopuntias, about 7% (Table 7), is consistent with the solution that can be delivered by the phloem for the most studied platyopuntia, O. ficus-indica. Indeed, the relative diluteness of the phloem solution in O. ficus-indica helps supply water for fruit transpiration, whose daily value exceeded water retention in the fruits of all 6 species of platyopuntias but which is not the case for tomato fruits (Araki et al. 1997).

In conclusion, the phloem is the main supplier of dry mass and the sole supplier of water for the young fruits of 6 species of platyopuntias midway between floral bud appearance and fruit maturation. Most of the water entering the fruits at that time is lost by transpiration, suggesting a substantial build-up of solutes in the young fruits. Such solutes are presumably polymerized to form mucilage, proteins and starch so that the fruit water potential can remain higher than that of the underlying cladodes. For instance, 21% of the osmolarity of the phloem solution in O. ficus-indica is due to amino acids and 56% is due to sucrose (Wang and Nobel 1995), both of which can be converted to polymers. The eventual degradation of certain accumulating polymers can cause an increase in sugars during the final stages of fruit ripening, leading to the observed increase in pulp sweetness (Cantwell 1995). Studies of the transpiration of the fruits together with their water potentials relative to the underlying cladode and daily dry mass gains indicate that the phloem can be the main supplier of both water and solutes to developing fruits for 6 species of platyopuntia and probably many other species.

Acknowledgements – This research was financially supported by institutional funds from the University of California to PSN and a graduate student fellowship from CONACyT to EDB.
References

Edited by R. Munns

166

Physiol. Plant. 109, 2000