Review

Attention, noise, and implications for wildlife conservation and management

Alvin Aaden Yim-Hol Chan, Daniel T. Blumstein*

Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA

ARTICLE INFO

Article history:
Accepted 17 January 2011
Available online 16 February 2011

Keywords:
Anthropogenic noise
Attention
Distraction
Conservation
Management

ABSTRACT

Anthropogenic stimuli are often viewed as disturbances that directly interfere with signal processing or communication, or directly harm animals. However, such sounds may also distract individuals and thus potentially interfere with their ability to make biologically important decisions about food selection, mate selection, and predator detection. This is because all of these decisions require animals to focus their attention on these tasks and the attention allocated to perceived stimuli is limited. We review the ways that attention is studied, the diversity of taxa in which this cognitive process has been studied, and how stimuli from one modality may interfere with attentional processes in another modality. Such distraction may increase the vulnerability of prey to predators and thus influence predation rates and, ultimately, both the population size, and the effective population size (through differential mortality). Recognizing that distraction is likely to be widespread is the first step towards managing it for wildlife conservation and the management of problem animals.

© 2011 Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 2
2. How attention is studied .. 2
3. Taxa in which attentional processes have been described ... 3
 3.1. Primates .. 3
 3.2. Rodents .. 3
 3.3. Mammals (excluding primates and rodents) .. 3
 3.4. Birds .. 3
 3.5. Amphibians and reptiles .. 3
 3.6. Invertebrates .. 4
4. The conservation and management relevance of attentional processes 4
5. Conclusions ... 5
 Acknowledgements ... 5
 References ... 5

* Corresponding author at: Department of Ecology & Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA. Tel.: +1 310 267 4746; fax: +1 310 206 3987.
E-mail address: marmots@ucla.edu (D.T. Blumstein).

0168-1591/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.applanim.2011.01.007
1. Introduction

Anthropogenic noise is present throughout the ocean (Hatch and Wright, 2007) and on land (Jabben et al., 2001). This creates a problem for animals that use sounds to conduct a variety of biologically important tasks (Lein, 1981; Gerhardt et al., 2002; Brumm and Slabbekoorn, 2005; Suryekke and Kalko, 2008). And, although they may adapt to living with certain urban characteristics (Luniak, 2004; Hunter, 2007), studies have shown that prominent ambient noise can mask acoustic signals (e.g., Slabbekoorn and Peet, 2003; Warren et al., 2006; Woods and Yezerinac, 2006), change population distributions (e.g., Reijen et al., 1998; Bejder et al., 2006; Bayne et al., 2008), increase vigilance (e.g., Delaney et al., 1999; Karp and Root, 2009), and create physiological stress (e.g., Campo et al., 2005). Indeed, anthropogenic sounds have been shown to even affect avian community structure and the nature of interspecific interactions (Francis et al., 2009). Despite rare adaptations to extraneous noise, such as modifying call structure to avoid acoustic masking (Foote et al., 2004), anthropogenic noise generally causes deleterious consequences. To avoid acoustic masking (Foote et al., 2004), anthropogenic sounds have been shown to even affect avian community structure and the nature of interspecific interactions (Francis et al., 2009). Despite rare adaptations to extraneous noise, such as modifying call structure to avoid acoustic masking (Foote et al., 2004), anthropogenic noise generally causes deleterious consequences. For example, beaked whale strandings (e.g., Frantzi, 1998) and attention to extraneous noise, such as modifying call structure to avoid acoustic masking (Foote et al., 2004), anthropogenic sounds may even affect avian community structure and the nature of interspecific interactions (Francis et al., 2009). Despite rare adaptations to extraneous noise, such as modifying call structure to avoid acoustic masking (Foote et al., 2004), anthropogenic noise generally causes deleterious consequences.

2. How attention is studied

Animals must divide their attention between various activities (e.g., playing, foraging, grooming) while simultaneously assessing predation risk (Blumstein, 1998). The study of attention can involve allocation of attention under certain conditions. For example, it has been shown that elk (Cervus elaphus) spend less time on vigilance and focus more attention on feeding when predation risk is low (Wolff and Van Horn, 2003). The allocation of attention may also be dependent on foraging behaviour. Bernays and Funk (1999) speculated that animal specialists that focus attention on a specific food source likely have higher foraging efficiency, which may give them an advantage over generalists because they spend less time on foraging and more attention can be allocated to assessing predation risk. It is possible that too many stimuli can be overwhelming; certain predators may become confused by swarming prey because they are unable to focus their attention on a specific individual (Jeschke and Tollrian, 2007). This confusion could be a direct result of divided attention (Shettleworth, 2010).

Attentional capabilities can also be studied in a more direct manner. One way is to investigate performance in visual discrimination tasks (e.g., Sagi and Julesz, 1986; Corbetta et al., 1991). The goal of such studies is to see how visual distractors influence the ability to identify a target from the background. Studies capitalize on the need to forage for cryptic prey or detect predators from a complex background. Treisman and Gelade (1980) suggested that attention is focused serially towards different features of the target and then integrated into a unified percept (i.e., feature integration theory). Such serial examination is required in visual searching (VanRullen et al., 2004), whereby the desired target is selected from the surrounding distractors (Wolfe, 2010). A study on visual searching tests attention by distracting the animal from identifying the target quickly and accurately (Shettleworth, 2010). In addition, possessing a ‘search image’ (i.e., focusing attention on specific visual features—Tinbergen, 1960; Langley, 1996) and employing ‘area restricted searches’ (i.e., restricting attention to a small and specific area—Curio, 1976; Kareiva and Odell, 1987; Fauchald and Tveraa, 2003) can further help identify area-restricted searches (i.e., restricting attention to a small and specific area—Curio, 1976; Kareiva and Odell, 1987; Fauchald and Tveraa, 2003) can further help identify...
a desired target. Many taxa have been subjected to visual discrimination tasks that test their attentional abilities.

3. Taxa in which attentional processes have been described

Here we review (the mostly) experimental studies demonstrating the variety of taxa that possess attentional abilities. Each study is intended to show the prevalence of attentional processes, regardless of the precise experimental procedures or findings. The diversity of species demonstrates that attention is a widespread, perhaps universal, cognitive ability that allows animals to cope with exposure to irrelevant stimuli. Compromised attention thus could have potentially important implications for conservation and management.

3.1. Primates

Studying attentional abilities in primates is an area of much interest. Chimpanzees (Pan troglodytes) (Tomonaga, 2001), baboons (Papio papio) (Deruelle and Fagot, 1998; Fagot et al., 1998), capuchin monkeys (Cebus apella) (Spinозzi et al., 2003), and macaques (Macaca mulatta) (Bichot et al., 1996; Bichot and Schall, 1999) are capable of focusing their attention to identify a target among a variety of distractors. In addition to visual discrimination tasks, joint attention (i.e., the ability to focus attention where another is looking via nonverbal communication) is an example of how attention is utilized and has been studied in a number of primates (e.g., chimpanzees—Povinelli and Eddy, 1996; macaques—Tomosello et al., 1998; olive baboons (Papio anubis)—Vick and Anderson, 2003; pileated gibbons (Hylobates pileatus)—Horton and Caldwell, 2006; orangutans (Pongo pygmaeus)—Itakura and Tanaka, 1998; lemurs (Eulemur fulvus and Eulemur macaco)—Ruiz et al., 2009). While these studies are experimental and direct evaluations of attentional processes, there is evidence from observational studies suggesting other primates are capable of attentional processes as well. For example, female mountain gorillas (Gorilla gorilla beringei) often shift their attention away from foraging to approaching adult males more often than when there are approaching females (Watts, 1998). In this case, it is logical to assume that adult males distract foraging females (implying the existence of attentional processes).

3.2. Rodents

There are many studies of attentional processes in rodents, mostly in rats and mice. For example, it has been shown that Norway rats possess the ability for sustained attention (i.e., vigilance) (e.g., Granon, 1998; Mirza and Stolerman, 1998), divided attention (i.e., being able to divide attention between different stimuli) (e.g., McGaughy et al., 1994; Jentsch and Taylor, 2003), and selective attention (i.e., focusing attention at a specific target) (e.g., Piser and Fibiger, 1983). These three terms are examples of how attention is described in practice. Mice (Mus musculus domesticus and Mus musculus musculus) have also been used as a model species in a variety of attention studies (e.g., Gaalen et al., 2003; Young et al., 2004; Greco and Carli, 2006). The study of attention is not limited to rats and mice though; Mongolian gerbils (Meriones unguiculatus) focus attention on novel stimuli presented in their visual field (Cheal, 1980). Also, California ground squirrels (Spermophilus beecheyi) have been shown to shift their attention to fast moving stimuli in a study conducted on their directional selectivity (Paolini and Sereno, 1998). And, Blumstein (1998) studied golden marmots (Marmota caudata aurea) and suggested that limited attention enhanced predation risk for individuals distracted by being engaged in social behaviours such as play and aggression.

3.3. Mammals (excluding primates and rodents)

Attentional processes have been studied in other mammals—mostly through visual discrimination tests (e.g., sea lions (Zalophus californianus)—Schusterman, 1966; Schusterman, 1967; elephants (Loxodonta africana)—Savage et al., 1994; red deer (C. elaphus)—Reby et al., 2008). Although attention has been studied in dolphins (e.g., Pack and Herman, 2004, 2006), the attentional processes of other cetaceans have not been as well investigated, most likely because of the logistical constraints in working with them.

3.4. Birds

Birds have also been the focus of many visual discrimination studies. For example, extensive work has been done on pigeons (family Columbidae) involving visual searches for cryptic food or specific patterns on complex, distracting backgrounds (Bond, 1983; Plaisted and Mackintosh, 1995; Langley et al., 1996). The ability to selectively focus attention to discover cryptic targets has also been shown in fowl (Gallus gallus domesticus) (Dawkins, 1971). Pigeons have been used to study the ‘attention threshold hypothesis’, which argues that the latency to discover a desired target within a backdrop of distractors is minimized by shifting between selectively focusing attention upon one stimulus type at a time and performing a slower search by becoming receptive to a full spectrum of stimuli (Bond, 1983). Blue jays (Cyanocitta cristata) and other species that have to find food against complex visual backgrounds may be more vulnerable to predation when searching for cryptic prey due to a compromised ability to detect predatory stimuli (Dukas and Kamil, 2000; Dukas, 2002).

3.5. Amphibians and reptiles

Studies involving attentional processes have been conducted on a variety of amphibians and reptiles, such as frogs (e.g., Ingle, 1975; Greenfield and Rand, 2001) and lizards (Fleishman, 1986). An example is an anole (Anolis auratus), which has a visual reflex that is drawn by moving and relevant objects. Fleishman (1992) speculated that there must be an attentional process that prevents distraction from ambient environmental motions (e.g., vegetation movement due to wind) that allows the lizards to discriminate relevant from irrelevant motions (i.e., visual search capabilities). In addition, Prechtl (1994) observed cortical...
oscillations that are linked to attentional processes in a species of pond turtles (Pseudmys scripta). The oscillations were also observed in response to salient (i.e., attention capturing) stimuli, such as sudden movements made by the experimenter.

3.6. Invertebrates

Attentional processes have been studied in honeybees (Apis melliflca), which have been shown to pay attention to a particular space occupied by different landmarks indicating the position of a sugar source (Anderson, 1977). This use of attention allows them to optimize their foraging patterns. The attention has also been suggested in spiders (e.g., Hebets, 2004; Nakata, 2010), hermit crabs (e.g., Jackson and Elwood, 1990; Chan et al., 2010), and nematodes (e.g., Hills et al., 2004). For instance, it has been shown that hermit crabs (Pagurus bernhardus) can be distracted during investigation of potential shells (Jackson and Elwood, 1990). Distraction in hermit crabs has been suggested in a variety of other studies (e.g., Elwood, 1995; Elwood et al., 1998; Neil and Elwood, 1986). We expect that given the diversity of invertebrate taxa in which attention has been studied, that most/all species have limited attentional abilities.

4. The conservation and management relevance of attentional processes

We have shown that attentional processes are widespread among animals. It is possible that distraction by anthropogenic noise might affect the population dynamics of many species through its impacts on survival and the later responses of adaptive behaviour. Many populations of amphibians (Collins and Storfer, 2003), reptiles (Gibbons et al., 2000), marine mammals (e.g., Turvey et al., 2007; Estes et al., 2009), birds (see Pimm et al., 2010) and most primates (see Mittermeier et al., 2009) are either declining, threatened, or endangered in at least some of their range. Despite dominating the planet's biodiversity, invertebrates have rarely been the focus of conservation (Dingle et al., 1997), even though they play a crucial role in the diet of many species and, importantly, that the distraction can come from stimuli in any modality (e.g., auditory—Berti and Schroger, 2003; visual—Visser et al., 2004; olfactory—Bunsey and Strupp, 1995). The majority of the examples we have outlined examine mostly the visual attentional capacity of these taxa, but with respect to risk assessment, predator detection likely involves more than visual cues. Chemosensory cues are also used in risk assessment by certain prey to avoid predation (Kats and Dill, 1998). For example, certain species of skinks (Carlia rostralis and C. storri) use odors to detect predators and assess the level of risk depending on the predator species (Lloyd et al., 2009). Therefore, anthropogenic noises may also distract animals from detecting predator sensory cues as well. The opposite theoretically works as well; anthropogenic stimuli of other modalities could distract animals from auditory cues necessary for biologically important tasks.

We speculate that noise could be strategically used to distract, and thus disrupt ‘overabundant’ animals. If, by doing so, we are able to reduce their reproductive success or survival, we have a potentially effective management tool. Noise has already been shown to deter some problem species away from a particular space. For example, ongoing research conducted by Dr. Richard Holstetter shows that altering the noise made by bark pine beetles (Dendroctonus ponderosae) and playing it back to them can effectively disrupt their mating and tunneling behaviour (Anon., 2010).
Additionally, ultrasonic noise has been found as a deterrent for certain nuisance animals (e.g., Nelson et al., 2005). Animals may, however, habituate to such chronic sound exposure (Bomford and O'Brien, 1990). If, despite habituation, the noise still distracts animals, the intended effect may persist. More research into how animals habituate to such sounds is needed.

5. Conclusions

We need studies that aim to better understand the population consequences of distraction on wildlife populations. In some cases, we may wish to reduce the effect of distraction while in other cases we may wish to increase it (i.e., to repel problem animals or invasive species). One key future question will be to understand how animals habituate to distracting stimuli over time. While Chan et al. (2010) speculated that continuous stimuli could result in habituation, more empirical evidence is necessary to test this hypothesis. In humans, continuous noises of even low intensity can impair cognitive performance (Beaman, 2005). It is possible that although animals may habituate to the stimuli, it may not always result in recovered risk assessment.

Acknowledgements

During manuscript preparation, Chan was partially supported by a Whitcome Summer Research Fellowship, and Blumstein was partially supported by NSF 0754247. We are grateful to two anonymous reviewers whose thoughtful comments helped us improve our presentation.

References

